Ray Tracing Harmonic Functions

Supplemental Material

Mark Gillespie, Denise Yang, Mario Botsch, Keenan Crane

1 EXPRESSING SPHERICAL HARMONICS AS POLYNOMIALS

Abstractly, spherical harmonics may be characterized as the Laplacian eigenfunctions of the sphere. However, the term "spherical harmonics" is often used to refer to a particular choice of eigenfunctions, expressed in spherical coordinates as

$$
\begin{equation*}
Y_{\ell}^{m}(\theta, \varphi)=N e^{i m \varphi} P_{\ell}^{m}(\cos \theta) \tag{1}
\end{equation*}
$$

Here N is a normalization constant and P_{ℓ}^{m} denotes the associated Legendre function of degree ℓ and order m. In this section, we show how to express these functions as the restrictions of harmonic polynomials of degree ℓ to the unit sphere. Converting to Cartesian coordinates, we find that

$$
\begin{align*}
Y_{\ell}^{m}(x, y, z) & =N\left(\frac{x+i y}{\|x+i y\|}\right)^{m} P_{\ell}^{m}(z) \tag{4}\\
& =N(x+i y)^{m} \cdot \frac{P_{\ell}^{m}(z)}{\left(1-z^{2}\right)^{m / 2}}, \tag{2}
\end{align*}
$$

where we have used the fact that $x^{2}+y^{2}=1-z^{2}$ for points on the unit sphere. Using the definition of the associated Legendre functions, the rightmost term is a polynomial $q(z)$ of degree $\ell-m$, leaving us with

$$
\begin{equation*}
Y_{\ell}^{m}(x, y, z)=N(x+i y)^{m} \cdot q(z) \tag{3}
\end{equation*}
$$

This polynomial is not homogenous, as q is not homogeneous. But we can homogenize it by considering instead the polynomial $\tilde{q}(x, y, z, \lambda):=\lambda^{\ell-m} q(z / \lambda)$. Setting $\lambda=\sqrt{x^{2}+y^{2}+z^{2}}$, we get a homogeneous polynomial defined on all of \mathbb{R}^{3} which agrees with Y_{ℓ}^{m} on the surface of the unit sphere (where $\lambda=1$).

To ensure that our spherical harmonics have unit L^{2}-norm over the sphere, we use the following normalization [Arfken 1985, p. 681]

$$
N=\sqrt{\frac{2 \ell+1}{2 \pi} \frac{(\ell-|m|)!}{(\ell+|m|)!}} .
$$

Since each polynomial $Y_{\ell}^{m}(x, y, z)$ is homogeneous of degree ℓ, its minimum value over a ball of radius h is simply h^{ℓ} times its minimum value over the unit ball. The minimum values over the unit ball are given by

$$
\begin{aligned}
& Y_{1}^{-1}(x, y, z) \geq 0.488603 \\
& Y_{1}^{0}(x, y, z) \geq 0.690988 \\
& Y_{1}^{1}(x, y, z) \geq 0.488603 \\
& Y_{2}^{-2}(x, y, z) \geq 0.546274 \\
& Y_{2}^{-1}(x, y, z) \geq 0.546274 \\
& Y_{2}^{0}(x, y, z) \geq 0.446031 \\
& Y_{2}^{1}(x, y, z) \geq 0.546274 \\
& Y_{2}^{2}(x, y, z) \geq 0.546274 \\
& Y_{3}^{-3}(x, y, z) \geq 0.590044 \\
& Y_{3}^{-2}(x, y, z) \geq 0.556298 \\
& Y_{3}^{-1}(x, y, z) \geq 0.62938 \\
& Y_{3}^{0}(x, y, z) \geq 1.0555 \\
& Y_{3}^{1}(x, y, z) \geq 0.62938 \\
& Y_{3}^{2}(x, y, z) \geq 0.556298 \\
& Y_{3}^{3}(x, y, z) \geq 0.590044 \\
& Y_{4}^{-4}(x, y, z) \geq 0.625836 \\
& Y_{4}^{-3}(x, y, z) \geq 0.574867 \\
& Y_{4}^{-2}(x, y, z) \geq 0.608255 \\
& Y_{4}^{-1}(x, y, z) \geq 0.706531 \\
& Y_{4}^{0}(x, y, z) \geq 0.512926 \\
& Y_{4}^{1}(x, y, z) \geq 0.706531 \\
& Y_{4}^{2}(x, y, z) \geq 0.608255 \\
& Y_{4}^{3}(x, y, z) \geq 0.574867 \\
& Y_{4}^{4}(x, y, z) \geq 0.625836 \\
&
\end{aligned}
$$

2 ALTERNATIVE FORMULAS FOR SOLID ANGLE

In this section, we describe the two alternative methods for evaluating the solid angle function associated to a nonplanar polygon P which were mentioned in Section 4.2 .2 of the main text. As before, we denote the vertices of our polygon P by $\mathbf{p}_{1}, \ldots, \mathbf{p}_{k} \in \mathbb{R}^{3}$. Given a unit sphere $S(\mathbf{x})$ centered around a point \mathbf{x}, we will denote the projection of \mathbf{p}_{i} onto the sphere by $\mathrm{q}_{i}:=\left(\mathbf{p}_{i}-\mathbf{x}\right) /\left|\mathbf{p}_{i}-\mathbf{x}\right|$, and will denote the resulting spherical polygon by Q. Throughout we use $\operatorname{atan} 2(y, x)$ to denote the two-argument arc tangent function, which yields values in the range $[-\pi, \pi)$; it is especially important when defining angle-valued functions to work in this full range (rather than the range $[-\pi / 2, \pi / 2]$ of the ordinary arc tangent function).

2.1 Quaternionic Formula

Chern and Ishida [2023, Cor. 3.4.1] introduced a formula to calculate the solid angle of a polygon P using quaternions:

$$
\begin{equation*}
\Omega_{P}(\mathbf{x}):=-2 \arg \left(\operatorname{Rot}\left(\mathbf{e}_{1}, \mathbf{p}_{1}-\mathbf{x}\right), \prod_{i=1}^{k} \operatorname{Rot}\left(\mathbf{p}_{i}-\mathbf{x}, \mathbf{p}_{i+1}-\mathbf{x}\right)\right) \tag{5}
\end{equation*}
$$

Here \mathbf{e}_{1} is the basis vector $(1,0,0), \operatorname{Rot}(\mathbf{v}, \mathbf{w})$ is the (non-normalized) quaternion encoding the shortest rotation from vector \mathbf{v} to vector \mathbf{w}

$$
\begin{equation*}
\operatorname{Rot}(\mathbf{v}, \mathbf{w}):=(\mathbf{v} \cdot \mathbf{w}+\|\mathbf{v}\|\|\mathbf{w}\|, \mathbf{v} \times \mathbf{w}) \tag{6}
\end{equation*}
$$

(see Chern and Ishida [2023, Def. 3.1] or Thomson [2015]), and $\arg (a, b)$ is defined for two quaternions a, b to be the angle

$$
\begin{equation*}
\arg (a, b):=\operatorname{atan} 2\left(\operatorname{Im}[\bar{b} a]_{0}, \operatorname{Re}[\bar{b} a]\right) \tag{7}
\end{equation*}
$$

which gives the angle from the origin to the quaternion $\bar{b} a$ in the plane spanned by the real axis and the first imaginary axis (see Chern and Ishida [2023, Sec. 3.2]). In Equation 7, we use $\operatorname{Im}[q]_{0}$ to denote the first imaginary component of a quaternion q-explicitly, $\operatorname{Im}[a+b i+c j+d k]_{0}=b$. In our experiments, we did not observe a significant improvement in accuracy compared to the triangulation scheme.

2.2 Angle Sum

There is also a classic formula for the signed area of Q which uses the corner angle sum [Legendre 1817, §505; Lee 2018, Proof 9.3]. If we let κ_{i} denote the exterior turning angle of Q at vertex i, and let τ denote the turning number of Q on S^{2}, then the area of Q is given by

$$
\begin{equation*}
\operatorname{area}(Q)=2 \pi \tau-\sum_{i=1}^{k} \kappa_{i} \tag{8}
\end{equation*}
$$

One can compute τ as the planar turning number of Q in any chart [Lee 2018, Proof 9.2], and one can compute the angles κ_{i} as

$$
\kappa_{i}=\operatorname{atan} 2\left(\mathbf{q}_{i} \cdot\left(\mathbf{n}_{i-1 / 2} \times \mathbf{n}_{i+1 / 2}\right), \mathbf{n}_{i-1 / 2} \cdot \mathbf{n}_{i+1 / 2}\right),
$$

where $\mathbf{n}_{i+1 / 2}:=\left(\mathbf{p}_{i}-\mathbf{x}\right) \times\left(\mathbf{p}_{i+1}-\mathbf{x}\right)$ are the (unnormalized) vectors orthogonal to the edge of Q between vertices i and $i+1$, and \mathbf{q}_{i} is the projection of \mathbf{p}_{i} onto the unit sphere centered at \mathbf{x}. Note, however, that when the evaluation point \mathbf{x} is anywhere on the line through \mathbf{p}_{i} and \mathbf{p}_{i+1}, the normal vector $\mathbf{n}_{i+1 / 2}$ is equal to zero, hence the angle $\kappa_{i}=\operatorname{atan} 2(0,0)$ is not well-defined (and likewise for $\left.p_{i-1}, p_{i}\right)$. Although the singularities arising from each corner should cancel out in exact arithmetic, this function is numerically ill-behaved in floating point. Moreover, as discussed by Chern and Ishida [2023], the normal vectors \mathbf{n} are not well-defined for zero-length edges, and hence exhibit poor numerical behavior for very short edges.

REFERENCES

George Arfken. 1985. Mathematical Methods for Physicists (3rd ed.). Academic Press. https://doi.org/10.1016/C2013-0-10310-8
Albert Chern and Sadashige Ishida. 2023. Area formula for spherical polygons via prequantization. arXiv preprint (2023), 12. https://arxiv.org/pdf/2303.14555.pdf
John M. Lee. 2018. Introduction to Riemannian Manifolds (2nd ed.). Graduate Texts in Mathematics, Vol. 176. Springer. https://doi.org/10.1007/978-3-319-91755-9
Adrien Marie Legendre. 1817. Éléments de géometrie (11th ed.). translated as: Elements of Geometry (1819). Cambridge University Press.
Joseph Thomson. 2015. Finding quaternion representing the rotation from one vector to another. Stack Overflow. https://stackoverflow.com/a/11741520 (version: 2015-05-19).

