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1 EXPRESSING SPHERICAL HARMONICS AS
POLYNOMIALS

Abstractly, spherical harmonics may be characterized as the Lapla-
cian eigenfunctions of the sphere. However, the term “spherical
harmonics” is often used to refer to a particular choice of eigenfunc-
tions, expressed in spherical coordinates as

𝑌𝑚ℓ (\, 𝜑) = 𝑁𝑒𝑖𝑚𝜑𝑃𝑚ℓ (cos\ ). (1)

Here 𝑁 is a normalization constant and 𝑃𝑚
ℓ

denotes the associated
Legendre function of degree ℓ and order𝑚. In this section, we show
how to express these functions as the restrictions of harmonic poly-
nomials of degree ℓ to the unit sphere. Converting to Cartesian
coordinates, we find that

𝑌𝑚ℓ (𝑥,𝑦, 𝑧) = 𝑁

(
𝑥 + 𝑖𝑦
∥𝑥 + 𝑖𝑦∥

)𝑚
𝑃𝑚ℓ (𝑧)

= 𝑁 (𝑥 + 𝑖𝑦)𝑚 ·
𝑃𝑚
ℓ
(𝑧)

(1 − 𝑧2)𝑚/2 ,

(2)

where we have used the fact that 𝑥2 + 𝑦2 = 1 − 𝑧2 for points on
the unit sphere. Using the definition of the associated Legendre
functions, the rightmost term is a polynomial 𝑞(𝑧) of degree ℓ −𝑚,
leaving us with

𝑌𝑚ℓ (𝑥,𝑦, 𝑧) = 𝑁 (𝑥 + 𝑖𝑦)𝑚 · 𝑞(𝑧) . (3)

This polynomial is not homogenous, as 𝑞 is not homogeneous.
But we can homogenize it by considering instead the polynomial
𝑞(𝑥,𝑦, 𝑧, _) := _ℓ−𝑚𝑞(𝑧/_). Setting _ =

√︁
𝑥2 + 𝑦2 + 𝑧2, we get a ho-

mogeneous polynomial defined on all of R3 which agrees with 𝑌𝑚
ℓ

on the surface of the unit sphere (where _ = 1).
To ensure that our spherical harmonics have unit 𝐿2-norm over

the sphere, we use the following normalization [Arfken 1985, p. 681]

𝑁 =

√︄
2ℓ + 1
2𝜋

(ℓ − |𝑚 |)!
(ℓ + |𝑚 |)! . (4)

The first several normalized spherical harmonics are given by:
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Since each polynomial 𝑌𝑚
ℓ
(𝑥,𝑦, 𝑧) is homogeneous of degree ℓ ,

its minimum value over a ball of radius ℎ is simply ℎℓ times its
minimum value over the unit ball. The minimum values over the
unit ball are given by

𝑌 −1
1 (𝑥, 𝑦, 𝑧 ) ≥ 0.488603

𝑌 0
1 (𝑥, 𝑦, 𝑧 ) ≥ 0.690988

𝑌 1
1 (𝑥, 𝑦, 𝑧 ) ≥ 0.488603

𝑌 −2
2 (𝑥, 𝑦, 𝑧 ) ≥ 0.546274

𝑌 −1
2 (𝑥, 𝑦, 𝑧 ) ≥ 0.546274

𝑌 0
2 (𝑥, 𝑦, 𝑧 ) ≥ 0.446031

𝑌 1
2 (𝑥, 𝑦, 𝑧 ) ≥ 0.546274

𝑌 2
2 (𝑥, 𝑦, 𝑧 ) ≥ 0.546274

𝑌 −3
3 (𝑥, 𝑦, 𝑧 ) ≥ 0.590044

𝑌 −2
3 (𝑥, 𝑦, 𝑧 ) ≥ 0.556298

𝑌 −1
3 (𝑥, 𝑦, 𝑧 ) ≥ 0.62938

𝑌 0
3 (𝑥, 𝑦, 𝑧 ) ≥ 1.0555

𝑌 1
3 (𝑥, 𝑦, 𝑧 ) ≥ 0.62938

𝑌 2
3 (𝑥, 𝑦, 𝑧 ) ≥ 0.556298

𝑌 3
3 (𝑥, 𝑦, 𝑧 ) ≥ 0.590044

𝑌 −4
4 (𝑥, 𝑦, 𝑧 ) ≥ 0.625836

𝑌 −3
4 (𝑥, 𝑦, 𝑧 ) ≥ 0.574867

𝑌 −2
4 (𝑥, 𝑦, 𝑧 ) ≥ 0.608255

𝑌 −1
4 (𝑥, 𝑦, 𝑧 ) ≥ 0.706531

𝑌 0
4 (𝑥, 𝑦, 𝑧 ) ≥ 0.512926

𝑌 1
4 (𝑥, 𝑦, 𝑧 ) ≥ 0.706531

𝑌 2
4 (𝑥, 𝑦, 𝑧 ) ≥ 0.608255

𝑌 3
4 (𝑥, 𝑦, 𝑧 ) ≥ 0.574867

𝑌 4
4 (𝑥, 𝑦, 𝑧 ) ≥ 0.625836
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2 ALTERNATIVE FORMULAS FOR SOLID ANGLE
In this section, we describe the two alternative methods for evalu-
ating the solid angle function associated to a nonplanar polygon 𝑃

which were mentioned in Section 4.2.2 of the main text. As before,
we denote the vertices of our polygon 𝑃 by p1, . . . , p𝑘 ∈ R3. Given
a unit sphere 𝑆 (x) centered around a point x, we will denote the
projection of p𝑖 onto the sphere by q𝑖 := (p𝑖 − x)/|p𝑖 − x|, and will
denote the resulting spherical polygon by 𝑄 . Throughout we use
atan2(𝑦, 𝑥) to denote the two-argument arc tangent function, which
yields values in the range [−𝜋, 𝜋); it is especially important when
defining angle-valued functions to work in this full range (rather
than the range [−𝜋/2, 𝜋/2] of the ordinary arc tangent function).

2.1 Quaternionic Formula
Chern and Ishida [2023, Cor. 3.4.1] introduced a formula to calculate
the solid angle of a polygon 𝑃 using quaternions:

Ω𝑃 (x) := −2 arg
(
Rot

(
e1, p1 − x

)
,

𝑘∏
𝑖=1

Rot
(
p𝑖 − x, p𝑖+1 − x

))
. (5)

Here e1 is the basis vector (1, 0, 0), Rot(v,w) is the (non-normalized)
quaternion encoding the shortest rotation from vector v to vectorw

Rot(v,w) :=
(
v ·w + ∥v∥∥w∥, v ×w

)
, (6)

(see Chern and Ishida [2023, Def. 3.1] or Thomson [2015]), and
arg(𝑎, 𝑏) is defined for two quaternions 𝑎, 𝑏 to be the angle

arg(𝑎, 𝑏) := atan2
(
Im

[
𝑏𝑎

]
0
, Re

[
𝑏𝑎

] )
, (7)

which gives the angle from the origin to the quaternion 𝑏𝑎 in the
plane spanned by the real axis and the first imaginary axis (see
Chern and Ishida [2023, Sec. 3.2]). In Equation 7, we use Im[𝑞]0 to
denote the first imaginary component of a quaternion 𝑞—explicitly,
Im[𝑎 + 𝑏𝑖 + 𝑐 𝑗 + 𝑑𝑘]0 = 𝑏. In our experiments, we did not observe a
significant improvement in accuracy compared to the triangulation
scheme.

2.2 Angle Sum
There is also a classic formula for the signed area of 𝑄 which uses
the corner angle sum [Legendre 1817, §505; Lee 2018, Proof 9.3]. If
we let ^𝑖 denote the exterior turning angle of 𝑄 at vertex 𝑖 , and let
𝜏 denote the turning number of 𝑄 on 𝑆2, then the area of 𝑄 is given
by

area(𝑄) = 2𝜋𝜏 −
𝑘∑︁
𝑖=1

^𝑖 . (8)

One can compute 𝜏 as the planar turning number of 𝑄 in any chart
[Lee 2018, Proof 9.2], and one can compute the angles ^𝑖 as

^𝑖 = atan2(q𝑖 · (n𝑖−1/2 × n𝑖+1/2), n𝑖−1/2 · n𝑖+1/2),

where n𝑖+1/2 := (p𝑖 − x) × (p𝑖+1 − x) are the (unnormalized) vectors
orthogonal to the edge of𝑄 between vertices 𝑖 and 𝑖 +1, and q𝑖 is the
projection of p𝑖 onto the unit sphere centered at x. Note, however,
that when the evaluation point x is anywhere on the line through
p𝑖 and p𝑖+1, the normal vector n𝑖+1/2 is equal to zero, hence the
angle ^𝑖 = atan2(0, 0) is not well-defined (and likewise for p𝑖−1, p𝑖 ).
Although the singularities arising from each corner should cancel
out in exact arithmetic, this function is numerically ill-behaved in
floating point. Moreover, as discussed by Chern and Ishida [2023],
the normal vectors n are not well-defined for zero-length edges, and
hence exhibit poor numerical behavior for very short edges.
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