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Fig. 1. A selection of applications of the Laplace operator on different polygonal and polyhedral meshes.
Figures taken from [Bunge et al. 2021, 2020, 2022].

The Laplace-Beltrami operator is one of the essential tools in geometric processing. It allows us to solve
numerous partial differential equations on discrete surface and volume meshes, which is a fundamental
building block in many computer graphics applications. Discrete Laplacians are typically limited to standard
elements like triangles or quadrilaterals, which severely constrains the tessellation of the mesh. But in recent
years, several approaches were able to generalize the Laplace Beltrami and its closely related gradient and
divergence operators to more general meshes. This allows artists and engineers to work with a wider range of
elements which are sometimes required and beneficial in their field. This course, which extends the state-of-
the-art report by Bunge and Botsch [2023], discusses the different constructions of these three ubiquitous
differential operators on arbitrary polygons and polyhedra and analyzes their individual advantages and
properties in common computer graphics applications.
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1 INTRODUCTION
The discrete Laplace-Beltrami operator, or Laplacian for short, is an ubiquitous tool in geometry
processing. It allows us to solve numerous partial differential equations on discrete surface and
volume meshes, which is essential for various computer graphics applications, like mesh smoothing,
mesh parameterization or fairing, followed by many others. For triangulated surfaces, the discrete
Laplacian based on the cotangent formula [Desbrun et al. 1999; Dziuk 1988; Meyer et al. 2003;
Pinkall and Polthier 1993] is omnipresent in graphics and geometry processing.
However, due to the growing needs in modeling and engineering applications, recent papers

point out that the restriction to triangle or tetrahedral meshes, while simple and convenient, is
no longer sufficient. Many users have to fall back to more general shapes to be able to express
geometric properties and features in their model. Applications benefiting from a more flexible
range of elements are, for example, fracture modeling [Bishop 2009; Ooi et al. 2012; Tabarraei and
Sukumar 2008] or linear elasticity problems [Tabarraei and Sukumar 2006]. Additionally, sincemicro-
structures of naturally occurring materials like bones can be described through polygonal domains,
generalized differential operators are useful tools for the solid- and bio-mechanics community
[Tabarraei and Sukumar 2006]. Furthermore, modeling artists predominantly use quad meshes.
In order to enable this flexibility, several papers within the graphics community developed

strategies to generalize the Laplace-Beltrami operator to general polygon meshes. This presents
several challenges. For instance, arbitrary polygons might not be inherently planar, potentially re-
sulting in twisted surfaces in 3D. Coming from various backgrounds and inspirations, all introduced
Laplacians address these difficulties in their own unique way, but it is not necessarily clear in which
aspects the operators actually differ and what their various nuances imply. This course, based on
the state-of-the-art report by Bunge and Botsch [2023], therefore intends to showcase occurring
similarities between the presented methods that may not be apparent if considered individually.
In order to achieve this, we summarize existing approaches that extend the Laplace operator to
surface polygon meshes and, if possible, to volumetric polyhedral meshes.

In the smooth setting the Laplacian of a function 𝑓 is defined as

Δ𝑓 = div∇𝑓 . (1)

Given their close relation, comparing suitable generalizations for discrete gradient and divergence
is an almost equally essential affair focused on in this course. In general, the papers we are going
to discuss have all been inspired by different well known numerical schemes commonly used for
various discretization problems. Namely the Finite Element Method (FEM), the Mimetic Finite
Difference Method (MFD), and the Finite Volume Method (FV). Since all generalized Laplacians
can be loosely sorted into one of these schemes, we will briefly explain their core principles at the
beginning of each section and highlight the inspirational elements that influenced the respective
papers. First, we will repeat necessary definitions required for the operator’s construction, followed
by the more detailed explanations of the involved polygonal operators and their different ideas,
including possible volumetric extensions. Afterwards, we will discuss the required properties
a discrete Laplacian should fulfill based on the work presented by Wardetzky et al. [2007] and
will analyze the respective operators in this context. The operators are evaluated in a variety of
quantitative comparisons that address reoccurring debates within the original papers. The source
code for the individual operators and experiments can be found at https://github.com/mbotsch/
polyLaplace to enable researchers to experiment with the different discretizations. In the end, the
course intends to provide the reader with an intuition to choose the optimal polygon Laplacian for
their given situation.
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2 BASIC DEFINITIONS
Consider a 2D polygon meshM = (V, E, F ) embedded in 3D, with verticesV , edges E, and faces
F . Each vertex 𝑣𝑖 ∈ V has an associated 3D position x𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) and each face 𝑓 consists of 𝑛𝑓

vertices. We define an additional set of oriented halfedgesH , where for each inner edge 𝑒 ∈ E there
exist two oppositely oriented halfedges, while each boundary edge has only one. Likewise, a 3D
polyhedral mesh has the same structure with only one additional set consisting of the volumetric
cells C.
We define a discrete Laplace operator L ∈ R |V |× |V | as the product of the inverse of a so-called

mass matrix M ∈ R |V |× |V | and stiffness matrix L ∈ R |V |× |V | :

L = M−1L. (2)

L is generally referred to as the strong form of the Laplacian and L is its integrated weak form.
The exact conditions that are imposed on these matrices will be discussed in the next section. As
for their construction, most of the upcoming methods focus on a local approach that builds the
required matrices per face or cell. We therefore define:

• The matrix X ∈ R |V |×3 encodes the vertex positions of the mesh in its rows.
• X𝑓 = (x𝑓1 , . . . , x

𝑓
𝑛𝑓
)T is the 𝑛𝑓 × 3 matrix containing in its rows the cyclically ordered vertex

positions x𝑓
𝑖
of the face 𝑓 .

• E𝑓 = (e𝑓1 , . . . , e
𝑓
𝑛𝑓
)T is the 𝑛𝑓 × 3 matrix containing in its rows the cyclically ordered edge

vectors e𝑓
𝑖
= x𝑓

𝑖+1 − x𝑓
𝑖
of the face 𝑓 .

• B𝑓 = (b𝑓1 , . . . , b
𝑓
𝑛𝑓
)T is the 𝑛𝑓 × 3 matrix containing in its rows the barycenters b𝑓

𝑖
=

1
2

(
x𝑓
𝑖+1 + x𝑓

𝑖

)
of each edge e𝑓

𝑖
.

2.1 Properties of a Discrete General Laplace Operator
The smooth Laplace-Beltrami operator has a set of key structural properties that each discretization
must be able to fulfill. The correlation between these smooth properties and discrete Laplace
operators has been discussed intensively for triangle meshes by Wardetzky et al. [2007] and for
tetrahedral meshes by Alexa et al. [2020]. However, these requirements equally hold for general
polygon and polyhedral meshes and are therefore important criteria for the numerical quality of a
discrete Laplacian. Unfortunately, as pointed out by Wardetzky et al., most meshes do not allow for
Laplacians to satisfy all discrete properties simultaneously, which coins the second part of their
paper “No free lunch”. In this section, we will reintroduce the individual definitions presented by
Wardetzky et al. [2007] in order to establish characteristics by which the quality of each presented
polygon Laplacian operator can be assessed.
In the smooth setting, consider a single connected manifold Ω, possibly with boundary, that is

equipped with a Riemannian metric. We define a function 𝑢 : Ω → R and its discrete equivalent
u ∈ R |V | , whose entries are the function values of 𝑢 sampled at the vertices of the surface meshM.
The strong Laplacian L ∈ R |V |× |V | defined on M is given as a |V| × |V| matrix pair (M, L)
consisting of a sparse symmetric mass matrix M and the weak form of the Laplacian given by the
sparse matrix L.

Symmetry. Given two functions 𝑢 and 𝑣 that are sufficiently smooth and vanish along the
boundary of Ω, the smooth Laplacian is self-adjoint with respect to the 𝐿2 inner product of these
functions, meaning

⟨Δ𝑢, 𝑣⟩ = ⟨𝑢,Δ𝑣⟩ (3)
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with ⟨𝑢, 𝑣⟩ =
∫
Ω
𝑢𝑣 d𝐴. We therefore request the strong form L to be a self-adjoint operator with

respect to the inner product induced by the symmetric mass matrix M, meaning

(Lu)TMv = uTM(Lv) (4)

⇔ uTLTv = uTLv (5)

for any u and v.

Locality. The smooth Laplacian of a function 𝑢 at a point p should only depend on the values
𝑢 (q) of other points q in an 𝜖-ball around p. This means that the discrete Laplacian should also
operate locally in the 1-ring neighborhood of the respective vertex and should not be affected by
distant vertices in the mesh.

Linear Precision. In the smooth setting, given a linear function 𝑢 defined on Ω, the Laplacian of
said function has to be zero in planar regions of the manifold. The discrete equivalent is similar:
Given a planar meshM and any linear function 𝑢, we require the strong version of the Laplacian
L to satisfy

(Lu)𝑖 = 0 (6)
for each inner vertex 𝑣𝑖 , where (·)𝑖 denotes the 𝑖-th entry or row of the vector or matrix within the
parenthesis. Alternatively, we can omit the influence of the mass matrix and require the stiffness
matrix to satisfy

(LX)𝑖 = 0. (7)

Positive Semi-Definiteness and Null Space. In the smooth setting, the Dirichlet energy of a function
𝑢 defined on the manifold Ω has to be greater than or equal zero. The discrete version of the Dirichlet
energy can be expressed with the help of the stiffness matrix as

1
2
uTLu. (8)

Therefore, L has to be positive semi-definite in order for the energy to remain non-negative. Note
that, depending on the definition, the Laplacian could alternatively be required to be negative semi-
definite. A second aspect of this property addresses the kernel of the Laplacian. The smooth Dirichlet
energy vanishes for constant functions. Therefore the kernel of L has to be one-dimensional as
well and can only contain constant functions. If the stiffness matrix can be expressed as

(Lu)𝑖 =
∑︁
𝑗

𝑤𝑖 𝑗 (𝑢𝑖 − 𝑢 𝑗 ), (9)

the discrete Laplacian automatically fulfills this property [Wardetzky et al. 2007].

Maximum Principle. The smooth maximum principle requires that harmonic functions (Δ𝑢 = 0)
have no local extremum at interior points of the manifold Ω. For example, this property assures
that approximated solutions of diffusion problems flow from regions with higher potential to
regions with lower potential, instead of the other way round. The discrete equivalent can be directly
addressed through the entries of the stiffness matrix by the so-called positive weight property,
which is a sufficient but not necessary condition for the discrete maximum principle. It demands
that for each vertex 𝑣𝑖 the entries L𝑖 𝑗 have to be less than or equal zero if 𝑖 ≠ 𝑗 and at least one
entry per row has to be nonzero.

Convergence. The convergence property requires that approximate solutions involving the
Laplace operator converge to the exact solution of the PDE under refinement of the mesh, which
was analyzed by Hildebrandt et al. [2006] and Wardetzky [2008]. This property will not be proven
for the upcoming operators, but analyzed empirically in the result section.
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3 COTANGENT LAPLACIAN ON TRIANGLE MESHES
One property shared by almost all of the discussed polygon Laplacians is that they reproduce the
standard cotangent stiffness matrix on triangle surface meshes. We will therefore shortly revisit its
definition based on the finite element discretization. Given a triangle meshM, let {𝜑1, . . . , 𝜑 |V | }
be the piecewise linear Lagrange basis functions defined on M, with

𝜑𝑖 (x𝑗 ) =
{

1 if 𝑖 = 𝑗,

0 otherwise.
(10)

The mass and stiffness matrices M, L ∈ R |V |× |V | of the Laplace operator are then discretized as

M𝑖 𝑗 =

∫
M

𝜑𝑖 · 𝜑 𝑗 =


|𝑡𝑖 𝑗𝑘 |+|𝑡 𝑗𝑖ℎ |

12 if 𝑗 ∈ N (𝑖),∑
𝑘∈N(𝑖 ) M𝑖𝑘 if 𝑗 = 𝑖,

0 otherwise,
(11)

and

L𝑖 𝑗 =
∫
M
⟨∇𝜑𝑖 ,∇𝜑 𝑗 ⟩ =


−𝑤𝑖 𝑗 if 𝑗 ∈ N (𝑖),∑

𝑘∈N(𝑖 ) 𝑤𝑖𝑘 if 𝑗 = 𝑖,

0 otherwise,
(12)

with
𝑤𝑖 𝑗 =

cot𝛼𝑖 𝑗 + cot 𝛽𝑖 𝑗
2

. (13)

Here 𝑡𝑖 𝑗𝑘 and 𝑡 𝑗𝑖ℎ denote the triangles adjacent to the edge 𝑒𝑖 𝑗 between the vertices (𝑣𝑖 , 𝑣 𝑗 ),
with

��𝑡𝑖 𝑗𝑘 �� , ��𝑡 𝑗𝑖ℎ �� describing their respective areas (see inset). The angles
𝛼𝑖 𝑗 and 𝛽𝑖 𝑗 lie in the opposite corners of the adjacent triangles andN(𝑖)
denotes the one-ring neighborhood surrounding 𝑣𝑖 . Note that for better
numerical robustness, the cotangent values are not obtained by using the
inverse trigonometric function itself, but rather through the respective
edge lengths and area of the involved triangle. Given a triangle 𝑡𝑖 𝑗𝑘 with
edge lengths 𝑙𝑖 𝑗 , 𝑙𝑖𝑘 and 𝑙 𝑗𝑘 respectively, we can compute the cotangent
of the corner angle \𝑘 at vertex 𝑣𝑘 through

cot\𝑘 =
𝑙2
𝑗𝑘
+ 𝑙2

𝑖𝑘
− 𝑙2

𝑖 𝑗

4
��𝑡𝑖 𝑗𝑘 �� . (14)

Therefore, the Laplacian itself can be constructed intrinsically [Sharp 2021]. Emulating the smooth
setting with the Laplacian being defined as the divergence of the gradient, one can express the
gradient operator as a discrete matrix G ∈ R3 | F |× |V | consisting of local sub-matrices G𝑖 ∈ R3×3

per triangle 𝑓𝑖 = 𝑡 𝑗𝑘𝑙 . Each column of G𝑖 is associated with the gradient of one of the respective
vertices. For example, the first column referring to vertex 𝑣 𝑗 , would be

G𝑖 (:, 1) =
(x𝑙 − x𝑘 )⊥

2
��𝑡 𝑗𝑘𝑙 �� . (15)

The global matrix G is then assembled by placing the respective face gradients at the column
entries of the individual vertices 𝑣 𝑗 and setting everything else to zero. This can further be used to
discretize the divergence as

D = GTM̂, (16)
with M̂ ∈ R3 | F |×3 | F | being the diagonal mass matrix containing the area of the triangle 𝑖 in the
three consecutive diagonal entries associated with face 𝑖 [Botsch et al. 2006]. The product of D and
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G gives us the stiffness matrix L, which is consistent with the continuous setting, but requires a
concrete embedding of the mesh in contrast to the intrinsic formulation of L itself [Sharp 2021].

3.1 Cotangent Laplacian on Tetrahedral Meshes
In the 3-dimensional case, given a tetraherdal meshM, the |V|× |V| stiffness and mass matrices are
discretized similarly to Equation (11) and Equation (12), but with the difference that the volumetric
linear Lagrange basis is used instead. This leads to the 3D stiffness matrix

L𝑖 𝑗 =


−𝑤𝑖 𝑗 if 𝑗 ∈ N (𝑖),∑

𝑘∈N(𝑖 ) 𝑤𝑖𝑘 if 𝑗 = 𝑖,

0 otherwise,
(17)

with

𝑤𝑖 𝑗 =
1
6

∑︁
𝑡𝑖 𝑗𝑘𝑙

𝑙𝑘𝑙 cot\ 𝑖 𝑗
𝑘𝑙
. (18)

The sum is taken over all thetrahedra 𝑡𝑖 𝑗𝑘𝑙 that include the edge connecting the vertices 𝑣𝑖 and 𝑣 𝑗 .
The edge length between 𝑣𝑘 and 𝑣𝑙 is denoted by 𝑙𝑘𝑙 and the angle \ 𝑖 𝑗

𝑘𝑙
is the respective interior

angle between the adjacent triangles 𝑡𝑖𝑘𝑙 and 𝑡 𝑗𝑘𝑙 [Crane 2019].
A commonly used alternative to the volumetric version of Equation (11) is the (lumped) diagonal

mass matrix M [Alexa et al. 2020; Crane 2019] with

M𝑖𝑖 =
1
4

∑︁
𝑡𝑖 𝑗𝑘𝑙

��𝑡𝑖 𝑗𝑘𝑙 �� . (19)

The sum is taken over all tetrahedra containing the vertex 𝑣𝑖 and
��𝑡𝑖 𝑗𝑘𝑙 �� denotes the volume of the

tetrahedron 𝑡𝑖 𝑗𝑘𝑙 .
The discrete gradient operator for a tetrahedron 𝑡𝑛 = 𝑡𝑖 𝑗𝑘𝑙 can be defined as follows [Alexa

et al. 2020]: Given a vertex 𝑣𝑖 within the tetrahedron, let n𝑗𝑘𝑙 be the face normal of the opposite
triangle 𝑡 𝑗𝑘𝑙 and 𝐴𝑖 =

��𝑡 𝑗𝑘𝑙 �� its area. The local gradient matrix G𝑛 ∈ R3×4 can then be constructed
column-wise for each vertex within the element. For example, with the first column referring to
vertex 𝑣𝑖 , it would be defined as

G𝑛 (:, 1) =
𝐴𝑖

3 |𝑡𝑛 |
n𝑗𝑘𝑙 . (20)

The local sub-gradients are then assembled into the global gradient operator G ∈ R3 | C |× |V | . As in
Equation (16), the volumetric divergence operator D ∈ R |V |×3 | C | is then given by

D = GTV̂, (21)

with V̂ ∈ R3 | C |×3 | C | being the diagonal mass matrix containing the volumes of the tetrahedron 𝑖 in
the three consecutive diagonal entries associated with cell 𝑖 .

3.2 Properties
Symmetry. Considering the individual entries of the stiffness matrices defined in Equation (12)

and Equation (17), the cotan operator is symmetric by construction in both 2D and 3D.

Positive Semi-Definiteness and Kernel Dimension. Since L can be considered as the Gramian matrix
of the gradients of the linear Lagrange basis functions, it is positive semi-definite by construction.
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Given that Δ𝑓 (x𝑖 ) of a function 𝑓 at vertex 𝑣𝑖 can be expressed through the well known cotan
formula [Desbrun et al. 1999; MacNeal 1949; Pinkall and Polthier 1993]

Δ𝑓 (x𝑖 ) =
1
2

∑︁
𝑣𝑗 ∈N(𝑣𝑖 )

(cot𝛼𝑖 𝑗 + cot 𝛽𝑖 𝑗 ) (𝑓 (x𝑗 ) − 𝑓 (x𝑖 )), (22)

the operator satisfies the condition given in Equation (9) and therefore has a one dimensional
kernel. The same holds for the tetrahedral equivalent by using the weights defined in Equation (18).

Locality. By construction, for both triangles and tetrahedra, each row (L)𝑖 associated to ver-
tex 𝑣𝑖 has non-zero entries only in the columns associated to nodes in its immediate one-ring
neighborhood.

Linear Precision. The area gradient of a triangle 𝑡𝑖 𝑗𝑘 with respect to the vertex 𝑣𝑖 can be expressed
as

∇x𝑖𝐴 =
cot\𝑘

2
(x𝑖 − x𝑗 ) +

cot\ 𝑗
2

(x𝑖 − x𝑘 ), (23)

with \ 𝑗 and \𝑘 denoting the angles at the respective vertices 𝑣 𝑗 ,𝑣𝑘 and 𝐴 =
��𝑡𝑖 𝑗𝑘 �� the area of the

triangle 𝑡𝑖 𝑗𝑘 . The cotan Laplace of the coordinate function x𝑖 at vertex 𝑣𝑖 can therefore be expressed
as the sum of area gradients of its adjacent triangles [Desbrun et al. 1999], which, if the triangles
all lie within the same plane, becomes zero. In 3D we can derive the operator as the gradient of the
volumes enclosed by the tetrahedra [Alexa et al. 2020; Crane 2019]. The gradient of the volume for
a tetrahedral mesh in a 3-dimensonal subspace also vanishes for inner vertices.

Maximum Principle. This property is in general not satisfied, since the cotangent becomes
negative for angles between 90 and 180 degrees, leading to positive entries L𝑖 𝑗 in the stiffness matrix
if the involved angles satisfy 𝛼𝑖 𝑗 + 𝛽𝑖 𝑗 > 𝜋 . For tetrahedral meshes, all involved dihedral angles
would have to be acute in order to retain negative weights, which can not be guaranteed [Alexa
et al. 2020].

Convergence. The convergence behavior of the cotan Laplace was discussed by Hildebrand et
al. [2006] and Wardetzky [2008]. They point out that pointwise convergence of refined meshes M
to a smooth surface Ω is not sufficient to guarantee convergence for the cotan Laplace. However,
if the meshes converge in Hausdorff distance and are normal graphs over Ω, then the Laplacian
converges to its smooth solution.

4 MIMETIC FINITE DIFFERENCES
The Mimetic Finite Difference method (MFD) [Lipnikov et al. 2014] is an approximation strategy
whose main goal is to define discrete differential operators that try to preserve, or mimic, certain
critical mathematical and physical properties of the underlying PDE. Its core principle lies in the
definition of a so-called primary operator, typically gradient, divergence or curl, based on discrete
vector and tensor calculus and various forms of Stokes’ theorem. The other operators are then
derived by using discrete analogs of Green’s formulas in order to retain a duality relationship
to the primary term. Several papers (e.g. [Brezzi et al. 2007, 2005]) applied the MFD method to
derive mimetic discretizations on polygonal and polyhedral meshes and stressed that one of the
key components is the definition of an accurate mimetic inner product. This matrix is a vital part
in some derivations of the discrete Laplacian. Although the MFD is not directly focused on the
construction of this operator, therefore exceeding the scope of this course, its theory influenced
recent approaches in the graphics community that will be discussed in the following sections. As a
disclaimer, some of the upcoming derivations require rather in-depth knowledge and may seem
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fast paced for readers that are not already familiar with these terms. However, we still chose to
include these detailed explanations in the hope that they might provide some useful insights on
the differences of the respective mathematical backgrounds that influenced each of the upcoming
discrete polygonal Laplacians.

4.1 Mimetic Polygon Laplacian
Alexa and Wardetzky [2011] rely on an algebraic approach to define their discrete Laplacian and
extend the MFD-based inner product stabilization [Brezzi et al. 2005] to two-dimensional manifolds
that even allow for non-planar polygons. Given a polygon surface mesh M embedded in 3D,
the only restrictions are that it has to be oriented, meaning that two adjacent faces have to be
oppositely oriented on the shared edge, and that the faces are simple, meaning that they are not
self-intersecting and have boundaries that form a closed loop.

4.1.1 Algebraic Framework. Let Γ𝑘 , 𝑘 ∈ {0, 1}, be the linear function space of discrete 𝑘-forms
on M. A 𝑘-form can be thought of as a function that takes in 𝑘-surfaces and assigns them their
integrated value as output, with a 0-surface being a node, a 1-surface an edge, a 2-surface a face
and so on. Alexa and Wardetzky derive their polygon Laplacian for 0-forms from the Laplace-de
Rahm operator, which for a scalar-valued function 𝑢 is defined as

Δ𝑢 = d∗d𝑢. (24)

In this context d : Γ0 → Γ1 is the exterior derivative and d∗ : Γ1 → Γ0 the codifferential, which is
defined as the adjoint of d with respect to the square integrable inner product [Rosenberg 1997].
They use the so-called coboundary operator as a discrete version of the smooth exterior derivative,
with

(d𝑢) (ℎ𝑖 𝑗 ) = 𝑢 ( 𝑗) − 𝑢 (𝑖) (25)

and ℎ𝑖 𝑗 being the oriented halfedge from vertex 𝑣𝑖 to 𝑣 𝑗 . The definition of a suitable adjoint operator
d∗ requires inner products on the 𝑘-form function spaces and is therefore, in contrast to the exterior
derivative, metric dependent. The inner products can be expressed as two symmetric positive
definite matricesM ∈ R |V |× |V | andM1 ∈ R |H |× |H| . Any choice ofM andM1 gives us an expression
for the discrete Laplacian

L = d∗d = M−1L (26)

with

L = dTM1d. (27)

The matrix version of the coboundary operator d ∈ R |H |× |V | is often referred to as the difference
operator. Its 𝑘-th row associated with the 𝑘-th halfedge ℎ𝑖 𝑗 ∈ H can be expressed as

d𝑘𝑙 =


−1 𝑙 = 𝑖,

1 𝑙 = 𝑗,

0 otherwise,
(28)

which is only non-zero for the entries d𝑘𝑖 and d𝑘 𝑗 associated with the vertices connected by the
halfedge.
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4.1.2 Choice Of Inner Product Matrices. Although in theory any choice for the two inner product
matrices would be feasible, not all of them yield the same quality of results. Alexa and Wardetzky
therefore motivate their chosen construction by fulfilling the desired criteria discussed in Section 2.1.
The inner product matrix for 0-forms assigns each vertex a certain mass. In order to retain locality,
the matrix M is given by

M𝑖𝑖 =
∑︁
𝑓 ∋𝑣𝑖

|𝑓 |
𝑛𝑓

, (29)

where |𝑓 | denotes the magnitude of the polygons’ vector area. As already mentioned, we also
consider non-planar polygons in R3 that do not necessarily define a surface. Therefore, |𝑓 | is defined
as the area of the largest orthogonal projection of the polygon onto a plane and can be computed
as the norm of the Darboux vector a𝑓 ∈ R3 of the skew symmetric (3 × 3) matrix

A𝑓 = ET
𝑓
B𝑓 , (30)

meaning

|𝑓 | =
a𝑓  =

1
2

∑︁
𝑣𝑖 ∈ 𝑓

x𝑖 × x𝑖+1

 . (31)

The cyclic vertex positions (x𝑖 , x𝑖+1) depend on the orientation of the face, which is encoded in
the previously defined matrix X𝑓 . It makes sense to look at the definition of the inner product for
1-forms from a local perspective per face and then later assemble the individual matrices into the
global representation, since the process can be repeated per element 𝑓 ∈ F . The starting point for
the construction is the matrix M̃𝑓 ∈ R𝑛𝑓 ×𝑛𝑓 given by

M̃𝑓 =
1
|𝑓 |B𝑓 BT

𝑓
, (32)

which was previously defined by Brezzi et al. [2005] and is motivated by the Laplacian’s connection
to mean curvatures. However, while this choice of inner product matrix is generally positive
semi-definite, in order for the Laplacian itself to fulfill this property, which is a desired criterion,
the inner products have to be positive definite. Alexa and Wardetzky therefore add a stabilization
term to extend Brezzi et al.’s definition to non-planar polygons and give rise to a positive definite
inner product. The necessity stems from the fact that for general polygons with 𝑛𝑓 vertices the
transposed midpoint matrix B𝑓 will have either rank 2 (planar) or 3 (non-planar), allowing for a
kernel of dimension 𝑛𝑓 − rank(B𝑓 ). Therefore, in order to fill up the kernel, Alexa and Wardetzky
introduce the alternative inner product matrix

M𝑓 := M̃𝑓 + C𝑓 U𝑓 C
T
𝑓
. (33)

Here, 𝑓 is the maximum orthogonal projection of the polygon 𝑓 and C𝑓 ∈ R𝑛𝑓 ×(𝑛𝑓 −2) is a matrix
whose columns span the kernel of ET

𝑓
. Combined with any choice of a symmetric positive definite

matrix U𝑓 ∈ R𝑛𝑓 ×𝑛𝑓 , the stabilization term will lead to a positive definite inner product M𝑓 , as
proven in Theorem 1 of the original paper. That C𝑓 only has to span the kernel of ET

𝑓
is motivated

by the linear precision property. In order for (LX)𝑖 to vanish in a planar region surrounding vertex
𝑣𝑖 , the stabilization term must also vanish. But since E𝑓 = E𝑓 for planar polygons, we get(

CT
𝑓
d𝑓 X𝑓

)
𝑖
=

(
CT
𝑓
E𝑓

)
𝑖
=

(
CT
𝑓
E𝑓

)
𝑖

!
= 0, (34)

10
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which is equivalent to (
ET
𝑓
C𝑓

)
𝑖

!
= 0. (35)

Here, d𝑓 refers to the local difference operator defined on the face 𝑓 . Since all other properties are
already accounted for, it is sufficient to require that C𝑓 spans the kernel of ET

𝑓
. As for inner products

in general, there are several choices for C𝑓 and U𝑓 that would satisfy the conditions, giving rise to
a whole family of suitable matrices. However, Alexa and Wardetzky propose a special combination
in order to achieve scale invariance as a property for the final Laplacian, meaning that the stiffness
matrix L remains unchanged when the mesh is uniformly scaled. Using a parameter 0 < _ ∈ R,
they choose the matrix U𝑓 as

U𝑓 := _I𝑓 , (36)
with I𝑓 being the 𝑛𝑓 -dimensional identity matrix. They choose C𝑓 such that its columns are
orthonormal, and the final inner product leads to a per-face Laplacian stiffness matrix

L𝑓 = dT
𝑓
M𝑓 d𝑓 (37)

that is not affected by scaling, is local and linearly precise. These local matrices are then assembled
into the global stiffness matrix L by assigning each vertex 𝑣𝑖 the 𝑖-th row and column of L in which
the sum over their respective entries in the local matrices are collected.

4.2 Geometric Polygon Laplacian
Alexa and Wardetzky’s focus lies solely on the definition of the Laplace-Beltrami and did not
further investigate other operators. This was later addressed by de Goes et al. [2020], who defined a
variety of discrete differential polygon operators that also serve as a generalization of the MFD, but
with a stabilization term for the inner product matrix on 1-forms inspired by the virtual element
method (VEM) [Beirão da Veiga et al. 2013]. The following chapter will further elaborate on their
approach. The main focus of de Goes et al. [2020] was a new linearly precise discretization of the
gradient, which allows to define a consistent set of operators, including their own interpretation of
the Laplacian.

4.2.1 Polygon Gradient. As in the previous section, the definition of the gradient will be applied
locally per polygon 𝑓 ∈ F , but can be assembled into a global gradient matrix acting on the
complete mesh. Given a scalar function 𝑢 defined on 𝑓 , we want to find a matrix G𝑓 that simulates
the behavior of the gradient ∇𝑢 on the polygon. For planar elements, this would normally be
achieved by applying Stokes’ theorem to ∇𝑢 and deriving a matrix discretization through the weak
form of the resulting boundary integral. However, since the polygons of the given mesh are not
necessarily planar it is not clear how to define the surface normal n(x) at the boundary points x.
Therefore, the standard approach cannot be used. De Goes et al. [2020] circumvent this problem by
evaluating the co-gradient operator

∇𝑢⊥ (x) := n(x) × ∇𝑢 (x), (38)

on which applying Stoke’s theorem leads to∬
𝑓

∇𝑢⊥ (x) d𝐴 =

∮
𝜕𝑓

𝑢 (x)t(x) dx, (39)

with t(x) being the unit tangent vector at boundary point x. This expression is independent of
the surface of the polygon and only requires the tangent vectors along the boundary, which are
uniquely defined. For example, if we consider the boundary integral in Equation (39) for linear

11
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functions𝑢, the integrated co-gradient can be evaluated exactly as a sum over the averaged function
values along the polygon edges, multiplied with the respective edge vector:∮

𝜕𝑓

𝑢 (x)t(x) dx = ET
𝑓
Avg𝑓 u𝑓 . (40)

Here Avg𝑓 ∈ R𝑛𝑓 ×𝑛𝑓 is a matrix that yields the average of consecutive vector entries, defined as

(
Avg𝑓

)
𝑖 𝑗
=


1
2 for 𝑗 = 𝑖
1
2 for 𝑗 = (𝑖 + 1) mod 𝑛𝑓

0 otherwise.
(41)

Additionally, in order to describe the co-gradient as matrix-vector multiplication, one can define the
cross product as a map from a 3D vector p = (𝑝1, 𝑝2, 𝑝3)T to a skew symmetric matrix [p] ∈ R3×3

with

[p] = ©«
0 −𝑝3 𝑝2
𝑝3 0 −𝑝1
−𝑝2 𝑝1 0

ª®¬ , (42)

such that [p]q = p × q for q ∈ R3. If we consider 𝑢 : R3 → R to be a linear function, meaning
𝑢 (x) = sTx + 𝑟 with s, x ∈ R3 and 𝑟 ∈ R, its co-gradient would yield n(x) × s, which can then be
expressed as [n(x)]s. This becomes useful if we consider∬

𝑓

∇𝑢⊥ (x) dx =

∮
𝜕𝑓

(
sTx + 𝑟

)
t(x) dx (43)

=ET
𝑓
Avg𝑓

(
X𝑓 s + 1𝑓 𝑟

)
(44)

=ET
𝑓
B𝑓 s, (45)

which equally gives

ET
𝑓
B𝑓 s =

(∬
𝑓

[n(x)] dx
)
s, (46)

since the term ET
𝑓
Avg𝑓 1𝑓 = ET

𝑓
1𝑓 , which is the sum of edge vectors and therefore zero. Equation (46)

implies that the surface integral of thematrix [n(x)] is equal to the previouslymentioned areamatrix
A𝑓 (see Equation (30)) related to the largest orthogonal projection of the face 𝑓 and independent of
the polygons’ interpolated surface. Therefore, replacing the normal term n(x) with the constant
face normal of the planar projection 𝑓 , given by

n𝑓 =
a𝑓
|𝑓 | , (47)

the surface integral of the co-gradient can be changed to∬
𝑓

[n𝑓 ]∇𝑢 (x) dx. (48)

Considering that the co-gradient ∇𝑢⊥ can now be interpreted as a local 90 degrees rotation of the
gradient around the normal n𝑓 , one can apply a second rotation around the same normal to obtain
−∇𝑢. This leads to de Goes et al.’s definition of the the gradient matrix

G𝑓 = − 1
|𝑓 | [n𝑓 ]ET𝑓 Avg𝑓 (49)

per polygon 𝑓 , which is proven to be linearly precise. As for the stiffness matrix, the local gradient
operators can be assembled into a global gradient operator per mesh G ∈ R3 | F |× |V | .
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4.2.2 Flat, Sharp And Projection Operator. Based on their definition of the gradient operator, de
Goes et al. derive an alternative expression to Alexa’s and Wardetzky’s choice for the inner product
matrix on 1-forms. Involved in the process are their discrete polygon extensions of the so-called
sharp ♯ and flat ♭ operators, both discretized as

V♯

𝑓
:=

1
|𝑓 | [n𝑓 ]

(
BT
𝑓
− c𝑓 1T𝑓

)
∈ R3×𝑛𝑓 , (50)

and

V♭
𝑓

:= E𝑓

(
I − n𝑓 nT𝑓

)
∈ R𝑛𝑓 ×3 (51)

respectively, with c𝑓 being the face centroid and 1𝑓 ∈ R𝑛𝑓 a vector with only ones as entries. As
pointed out in Lemma 2 of the original paper, this expression for the sharp operator yields

G𝑓 u𝑓 = V♯

𝑓
d𝑓 u𝑓 , (52)

for any scalar function u𝑓 and is therefore able to reproduce a discrete version of the smooth
relation ∇𝑢 = (d𝑢)♯ between sharp and gradient operator. In the continuous setting, given a vector
space 𝑉 equipped with an inner product ⟨·, ·⟩ represented by a matrix K:

⟨x, y⟩ = xTK y ∀ x, y ∈ 𝑉 , (53)

the flat operator ♭ is defined as

v♭ (u) = ⟨v, u⟩ = vTK u, (54)

mapping a vector v from the vector space 𝑉 to a functional 𝑔(u) = ⟨v, u⟩ in its dual space 𝑉 ∗

[Lee 1997]. The flat and sharp operators form an isomorphism and we know from the previous
assumption that for each linear functional𝑔 ∈ V∗ there exists a unique v ∈ 𝑉 such that𝑔(u) = ⟨v, u⟩
for all u ∈ 𝑉 . Therefore, the sharp operator ♯ forms the inverse of ♭ and can be considered as
𝑔♯ = v. This is commonly referred to as lowering or raising an index. In de Goes’ setting, the matrix
V♭ maps a 3D vector to its tangential part and then computes its counter-clockwise circulation
along the edges of the polygon, giving us a discrete 1-form. The sharp operator V♯ inversely maps
the values of a discrete 1-form defined on the polygon back to a single tangent vector per face.
However, in contrast to the continuous setting, the operators defined by de Goes et al. are not the
exact inverses of each other. The definition holds for any vector v ∈ R3 that satisfies vTn𝑓 = 0,
meaning it is tangent to the polygon. If this vector is flattened to a 1-form and then inversely
sharpened back, it regains its original form. However, first applying the sharpening operator and
then lowering the resulting tangent vector back to its 1-form does not have the same effect due to
the rank deficiency of V♯

𝑓
. It reduces the 𝑛𝑓 values of a discrete 1-form to only a tangent vector on

the polygon 𝑓 [de Goes et al. 2020] and therefore loses information. Inspired by the virtual element
method [Beirão da Veiga et al. 2013], they mitigate the effect by defining a so-called projection
operator

P𝑓 := I𝑓 − V♭
𝑓
V♯

𝑓
∈ R𝑛𝑓 ×𝑛𝑓 (55)

that measures the error of V♭
𝑓
and V♯

𝑓
being inverse to each other. Basically, by first sharpening a

1-form 𝑔 to a tangent vector that is then flattened back to a representative 1-form 𝑔, the projection
operator eliminates the components of 𝑔 that would result in a tangent vector after applying V♯

𝑓
.
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4.2.3 Stiffness Matrix. Equipped with the previously defined operators, de Goes et al. [2020] define
their local inner product matrices acting on 1-forms as

M𝑓 := |𝑓 | V♯T
𝑓
V♯

𝑓
+ _ PT

𝑓
P𝑓 , (56)

which can be assembled into the global inner product matrixM1 acting on the whole mesh. The
matrixM𝑓 maps the involved 1-forms to their respective tangential vectors with the help of the
sharpening operator V♯

𝑓
, resulting in their dot product. The potential rank deficiency is mitigated

through the second correction term regulated by a parameter _ > 0. As for Alexa and Wardetzky,
this regularization is necessary to guarantee that the inner product matrix is strictly positive
definite, which can then be used as before to define the local discrete Laplace-Beltrami operator

L𝑓 = dT
𝑓
M𝑓 d𝑓 . (57)

4.3 Gradient and Divergence Operator
Since the Laplacian of a function 𝑢 is defined as the divergence of the gradient of said function

Δ𝑢 = div(∇𝑢), (58)
its discretization should be able to simulate the same behavior. This means that for each gradient
matrix G𝑓 ∈ R3×𝑛𝑓 defined on a polygon 𝑓 , there should exist a respective divergence matrix
D𝑓 ∈ R𝑛𝑓 ×3 with

L𝑓 = D𝑓G𝑓 . (59)
Typically, this divergence operator is defined as the adjoint of the gradient scaled with a mass
matrix containing the faces areas. However, a possibility for both presented approaches [Alexa
and Wardetzky 2011; de Goes et al. 2020] to satisfy Equation (59) would be to follow the discrete
exterior calculus interpretation [Desbrun et al. 2005] of the operators. Here, the difference matrix
d𝑓 can be seen as a gradient operator acting on 0-forms and the divergence of a discrete 1-form on
𝑓 is then defined as

D𝑓 := dT
𝑓
M𝑓 , (60)

which gives the required equality. Note that this interpretation of the gradient differs from de Goes’
geometric operator in Equation (49). In fact, given that their sharp operator satisfies V♯

𝑓
d𝑓 = G𝑓 ,

we can interpret their L𝑓 as
|𝑓 |GT

𝑓
G𝑓 + _ d𝑓 PT𝑓 P𝑓 d𝑓 , (61)

which means that their stiffness matrix is composed from the “traditional” interpretation of gradient
and divergence, combined with the scaled stabilization term. This is reflected in the second part of
their paper, where they define the divergence of face-based vector fields as the trace of the covariant
derivative. Given a vector u𝑓 associated with a face 𝑓 , its divergence actually simplifies to

D𝑓 u𝑓 = |𝑓 |GT
𝑓
u𝑓 , (62)

leading to two interpretations of the divergence operator, one acting on 1-forms and the other on
vector fields.

4.4 Differences between Inner Product Matrices
The previously presented Laplacians are closely related in their definitions of the inner product
matrix for 1-forms. We will therefore shortly highlight some of the similarities and differences of the
respective matrices. We already established that Alexa and Wardetzky’s matrix M̃𝑓 follows Brezzi
et al.’s construction. M̃𝑓 is dependent on the choice of origin if regarded individually, however,
combined with the difference matrix d𝑓 and its adjoint dT

𝑓
, this dependency vanishes. De Goes et
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Fig. 2. Vectors involved in the inner product matrix for 1-forms for both Alexa and Wardetzky [2011] and de
Goes et al. [2020] if computed on a planar polygon. The figure was taken from [Bunge and Botsch 2023].

al.’s equivalent eliminates this dependency immediately by regarding the midpoints relative to
the respective centroid of the face as C𝑓 ∈ R𝑛𝑓 ×3, with row entries c𝑖 = b𝑖 − c𝑓 . However, given a
planar face, combining the matrices BT

𝑓
and CT

𝑓
with d𝑓 actually yields the same result, as visualized

in Figure 2. Without the respective stabilization terms, both methods would lead to identical inner
products since the remaining part of de Goes et al.’s method, namely

−[n𝑓 ]2 =
(
I − n𝑓 nT𝑓

)
, (63)

has no effect in this situation. Therefore, at least for planar polygons, the biggest difference between
the inner product matrices are the stabilization terms.

4.5 Key Outcomes
For the computer graphics community, the main achievement of the two presented polygon
Laplacians is to extend the MFD based inner product stabilization from Brezzi et al. [2005] to
possible non-planar two manifolds embedded in 3D. While the individual mathematical derivations
of the operators differ, they both introduce additional weighted stabilization terms in order to
guarantee the crucial requirement of strict positive definiteness of the inner product matrices.

5 FINITE ELEMENT DISCRETIZATIONS
The finite element method (FEM) is often used to approximate the solution 𝑢 to a given PDE on a
simplicial mesh with the help of a finite set of basis functions. The exact number depends on both
the shape of the element and the order of the basis itself. In the linear case, we typically associate
an individual shape function 𝜑𝑖 with the vertex x𝑖 , also commonly referred to as node. Now, instead
of solving the PDE directly, the objective changes to finding suitable coefficients 𝑢𝑖 , 𝑖 = 1, . . . , |V|,
that approximate the unknown solution 𝑢 of the PDE with

𝑢 (x) =
|V |∑︁
𝑖=1

𝑢𝑖𝜑𝑖 (x). (64)

For example, a common problem solved with the finite element method is the Poisson equation
−Δ𝑢 = 𝑓 for a known function 𝑓 . Given a surface mesh, the discretized PDE leads to a linear system
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Fig. 3. Harmonic shape functions associated with the 6 nodes of a planar L-shaped polygon. The larger
dots with the slight offset are the sampled center points k𝑖 and the small dots on the boundary denote the
collocation points c𝑗 for Dirichlet boundary constraints. The figure was taken from [Martin et al. 2008].

Lu = f with a Laplace matrix L that is defined as the integrated dot product of the gradients of the
basis functions:

L𝑖 𝑗 =
∫
M
⟨∇𝜑𝑖 ,∇𝜑 𝑗 ⟩. (65)

While a variety of different bases can be used to solve this system, for triangle meshes we focus
on linear nodal shape functions that are defined piecewise per face and satisfy the Lagrange
interpolation property already mentioned in Equation (10):

𝜑𝑖 (x𝑗 ) =
{

1 if 𝑖 = 𝑗,

0 otherwise.
(66)

Furthermore, we want them to satisfy additional properties within each element of the mesh in
order to guarantee convergence under refinement [Hughes 2012]:
(1) They have to be 𝐶1 continuous within the element and 𝐶0 across its boundaries.
(2) For the basis to satisfy constant precision, the 𝜑𝑖 have to form a partition of unity

𝑛𝑓∑︁
𝑖=1

𝜑𝑖 (x) = 1. (67)

(3) They have to fulfill the linear reproduction property
𝑛𝑓∑︁
𝑖=1

𝜑𝑖 (x)x𝑖 = x (68)

on planar polyons.
A standard set of basis functions meeting all these requirements are the piecewise linear hat
functions on triangle meshes, also known as barycentric coordinates. For general polygons, there
exist a variety of generalized barycentric coordinates (GBC) [Bishop 2014; Floater 2003; Hormann
and Sukumar 2008; Joshi et al. 2007; Ju et al. 2005], which are based on the idea to express any point
within the polygon as weighted sum over its boundary nodes. This defines local shape functions
that can be used in the finite element analysis. Extensive surveys [Chen and Gotsman 2016; Floater
2015] have already discussed the benefits and properties of these shape functions, which were also
incorporated in polyhedral finite element methods [Manzini et al. 2014] for volume meshes.

5.1 Harmonic Coordinates
Since this report is more focused on the explicit construction of a Laplacian operator, we will not
discuss shape functions based on GBC in the same depth, but rather explain one representative case,
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named the harmonic coordinates. While other methods like the maximum entropy coordinates
[Hormann and Sukumar 2008] are very present in the FEM analysis on polytopes, we still chose the
harmonic shape functions due to their numerous natural mathematical properties that makes them
so well suited for FEM. This includes smoothness, non-negativity, the mean-value property and
minimization of the Dirichlet energy [Chen and Gotsman 2016; Martin et al. 2008]. They can also be
analyzed on arbitrary convex and non-convex polygons and polyhedra [Bishop 2014; Wicke et al.
2007]. The only real drawbacks of these shape functions are them not having a closed form, and
therefore requiring costly numerical integration, and that they are only defined on planar elements.
In this section, we will review both the construction of polygonal and polyhedral finite element
shape functions based on the work of Joshi et al. [2007] and Martin et al. [2008]. As with the other
methods, the properties of the harmonic coordinates will be further described in Section 7.

5.1.1 Harmonic Shape Functions on Planar PolygonMeshes. Given a meshM consisting of arbitrary
planar polygons F , shape functions 𝜑 𝑓

𝑖
: 𝑓 → R, defined on a polygon 𝑓 ∈ F , are called harmonic

if they satisfy Δ𝜑
𝑓

𝑖
= 0. In this case, they can be uniquely determined by specifying their function

values 𝑏𝑖 along the edges of the polygon as Dirichlet boundary conditions:

Δ𝜑
𝑓

𝑖
(x) = 0 for x ∈ 𝑓 ,

𝜑
𝑓

𝑖
(x) = 𝑏𝑖 (x) for x ∈ 𝜕𝑓 .

(69)

In the linear case, the required Lagrange interpolation property and𝐶0 continuity can be guaranteed
by linearly interpolating the nodal values of 𝜑 𝑓

𝑖
along the boundary of the face. However, for

polygons it is not possible to find a closed form for these shape functions and they have to be
approximated numerically. This is why Martin et al. propose a scheme based on the method of
fundamental solutions (MFS) [Fairweather and Karageorghis 1998] to determine the harmonic
shape functions, although other methods are equally applicable. The core principle of MFS is to
use an analytic fundamental solution 𝜓 of the respective PDE, in our case the Laplace equation
(69), and approximate the sought solution through a linear combination of𝜓 centered at different
source points {k1, . . . , k𝑛} of the ambient Euclidean space. In our case, the fundamental solution to
the 2D Laplace equation would be the radial basis function

𝜓 (∥x∥) = log(∥x∥), (70)

which is well defined in R2 except for one singularity at the origin. Translating this function to the
previously chosen source points, we can approximate shape functions 𝜙 𝑓

𝑖
with

𝜙
𝑓

𝑖
(x) =

𝑛∑︁
𝑗=1

𝑤𝑖 𝑗𝜓
(x − k𝑗

) , (71)

which are then harmonic by construction.
The𝜓 𝑗 (x) := 𝜓 (

x − k𝑗

) are also often referred to as kernels and have to be placed outside of
the face’s domain (see Figure 3), since their singularities lie at the centers k𝑗 . Martin et al. suggest a
number of 3–5 kernels per edge distributed by a uniform sampling. However, in the current state,
shape functions 𝜙 𝑓

𝑖
approximated via Equation (71) would not be able to exactly reproduce linear

functions, violating the linear precision property. Therefore, Martin et al. add a linear polynomial

𝜑
𝑓

𝑖
(x) =

𝑛∑︁
𝑗=1

𝑤𝑖 𝑗𝜓 ( | |x − k𝑗 | |) + sT𝑖 x + 𝑟𝑖 (72)
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to guarantee that the function space spanned by the shape functions contains all linear functions.
Linear polynomials are always harmonic, so 𝜑 𝑓

𝑖
still satisfies Equation (69). In order to approximate

the Dirichlet boundary constraints, we select𝑚 = 3𝑛 uniformly sampled collocation points c𝑖 along
the edges 𝑒𝑘𝑙 of the polygon to minimize the discretized boundary integral over the 𝐿2 error∫

𝜕𝑓

(
𝜑
𝑓

𝑖
(x) − 𝑏𝑖 (x)

)2
≈ 1
𝑚

𝑚∑︁
𝑗=1

(
𝜑
𝑓

𝑖
(c𝑗 ) − 𝑏𝑖 (c𝑗 )

)2
. (73)

This can be solved with the help of the following linear system

©«
𝜓11 · · · 𝜓1𝑛 cT1 1
...

...
...

...

𝜓𝑚1 . . . 𝜓𝑚𝑚 cT𝑚 1

ª®®¬
©«

𝑤𝑖1
...

𝑤𝑖𝑛

s𝑖
𝑟𝑖

ª®®®®®®¬
=

©«
𝑏𝑖 (c1)

...

𝑏𝑖 (c𝑚)

ª®®¬ , (74)

where𝜓𝑖 𝑗 = 𝜓 ( | |c𝑖 − k𝑗 | |) and 𝑏𝑖 (c𝑗 ) contains the function value of the respective basis function at
this point. Since the system is overdetermined (𝑚 > 𝑛 + 3), it has to be solved for the least-squares
solution. Martin et al. recommend to use a QR factorization or the SVD pseudo inverse [Golub and
Van Loan 1996].

5.1.2 Harmonic Shape Functions on Polyhedral Meshes. From now on, additionally to the surface
case, each of the introduced methods will have a volumetric extension to polyhedral meshes. As
already mentioned, polyhedra allow for a variety of simulation applications, like fracture modeling
[Bishop 2009], to be more flexible in their range of elements. However, boundary polygons in 3D
are not necessarily planar and the increased connectivity between vertices lead to denser and more
costly operators. Laplacians for volumetric meshes come therefore with their own individual set of
challenges that have to be addressed.

The computation of a harmonic basis function for polyhedral meshes follows a similar approach
as the previous section. The core principle to obtain a 𝑘-dimensional harmonic function is to impose
(𝑘−1)-dimensional harmonic coordinates as Dirichlet boundary conditions and proceed recursively.
Therefore, given a polyhedron 𝑐 with 𝑛𝑐 vertices, we first approximate 2D shape functions for
each of the polyhedron’s faces with the system described in the previous section. Note that this
requires the boundary faces of the polyhedron to be planar. These will give us the new boundary
constraints 𝑏𝑐𝑖 for the respective 3D shape function 𝜑𝑐

𝑖 : 𝑐 → R associated to vertex 𝑣𝑖 , with kernels
and collocation points uniformly sampled over the face of the polygonal cell 𝑐 . The only remaining
change to the linear system in Equation (74) is that the chosen fundamental solution for the 3D
Laplace equation changes to

𝜓𝑐 (∥x∥) = 1
∥x∥ , (75)

otherwise all steps remain the same.

5.1.3 Stiffness and Mass matrix. Equipped with the shape functions described in the previous
section, we are now able to express sought solutions of a PDE with the FEM interpolation scheme
as described in Equation (64). The discretizations of both stiffness and mass matrix needed for the
Laplacian can be obtained through

(L𝑓 )𝑖 𝑗 =
∫
𝑓

⟨∇𝜑 𝑓

𝑖
,∇𝜑 𝑓

𝑗
⟩ dx. (76)
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and

(M𝑓 )𝑖 𝑗 =
∫
𝑓

𝜑
𝑓

𝑖
· 𝜑 𝑓

𝑗
dx. (77)

Note that this process requires numerical integration, since the gradients of the harmonic shape
functions are not constant. For volume meshes, the discretization process remains the same, but
we integrate over the respective polyhedral cell 𝑐 instead of a polygon face 𝑓 .

5.2 Linear Virtual Refinement Method

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣 𝑓

Fig. 4. Spanned triangle fan on the virtual mesh after inserting the vertex 𝑣 𝑓 . The figure was taken from
[Bunge et al. 2020].

Given the problems one has to deal with while working on general polygons, a rather pragmatic
solution would be to simply refine the mesh into triangles. However, this can potentially break
intended symmetry structures of the original tessellation and increase the dimension of linear
systems if new vertices have to be added. The method presented by Bunge et al. [2020] took
inspiration from the simplicity of the triangle refinement, but proposed an in-between approach
that avoids the downsides of an explicit refinement of the mesh.
Given a polygon meshM, they introduce virtual vertices 𝑣 𝑓 into each (not necessarily planar)

polygon 𝑓 . These are expressed as affine combinations of the original faces’ vertex positions

x𝑓 =
∑︁
𝑣𝑖 ∈ 𝑓

𝑤𝑖 x𝑖 , with
∑︁
𝑣𝑖 ∈ 𝑓

𝑤𝑖 = 1. (78)

The additional vertices allow Bunge et al. to construct a virtual triangle meshM△ by dividing each
face into a triangle fan as shown in Figure 4. On this mesh, standard approaches like the cotan
Laplacian (see Section 3) can be easily computed. However, in order to define operators working on
the original mesh, Bunge et al. redistribute the values at the virtual vertices back to their associated
polygon nodes. This is achieved by combining the affine weights w𝑓 = (𝑤1, . . . ,𝑤𝑛𝑓

) of each face
into a local (𝑛𝑓 + 1) × 𝑛𝑓 prolongation matrix

P𝑓

𝑖 𝑗
=

{
𝑤 𝑗 for 𝑖 = 𝑛𝑓 + 1
𝛿𝑖 𝑗 otherwise,

(79)

which can be assembled into a global matrix P ∈ R( |V |+| F | )× |V |

P𝑖 𝑗 =


1 if 𝑖 = 𝑗 and 𝑖 ≤ |V|
𝑤𝑘 𝑗 if 𝑖 = |V| + 𝑘 and 𝑣 𝑗 ∈ 𝑓𝑘

0 otherwise,
(80)
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acting on the whole mesh. Using this matrix leads to a very easy refinement and coarsening process
that allows Bunge et al. to define a polygon Laplacian, gradient and divergence operator on the
original mesh: Given the global prolongation matrix P, they construct the cotangent mass and
stiffness matricesM△ and L△ on the virtual triangle meshM△ (see Equation (11) and Equation (12))
and define the matrices for the original polygon mesh as

L = PTL△P (81)

and
M = PTM△P. (82)

As for the Laplacian, they compute the gradient and divergence operators G△ and D△ onM△ by
using the simplicial definitions in Equation (15) and (16) to express the polygon operators as

G = G△P (83)

and

D = PTD△ = PTGT
△M̂△ . (84)

Combining both polygon gradient and divergence leads once again to the stiffness matrix L and is
therefore consistent with the previous discretization. The remaining question addressed by Bunge
et al. [2020] is the placement of the virtual vertex. Given that positions outside of the (planar)
polygon’s boundary would lead to flipped virtual triangles with bad numerical properties, they
suggest the virtual vertex to be the unique minimizer of the sum of squared triangle areas of
the refined face. This is motivated by the fact that for a planar star-shaped polygon the point
is guaranteed to lie within the polygon, leading to virtual triangles with positive areas. Finding
the vertex position can be directly expressed as minimization problem over the weight vector
w𝑓 = (𝑤1, . . . ,𝑤𝑛𝑓

)T ∈ R𝑛𝑓 with

w𝑓 = arg min
w

𝑛𝑓∑︁
𝑖=1

area

(
x𝑖 , x𝑖+1,

𝑛𝑓∑︁
𝑗=1

𝑤 𝑗 x𝑗

)2

(85)

such that
𝑛𝑓∑︁
𝑗=1

𝑤 𝑗 = 1. (86)

However, for faces with valence higher than 3 this system is under-constrained and several sets of
weights are able to represent the point. The authors therefore add the constraint that the weight
vector should have minimal 𝐿2 norm, which leads to a unique solution that encourages a more
uniform distribution among the weights and can be solved with a linear system.

5.2.1 Finite Element Shape Functions. Drawing the connecting to traditional FEM methods, the
previously defined prolongation weights allow Bunge et al. to define a set of local shape functions
{𝜑 𝑓

1 , . . . , 𝜑
𝑓
𝑛𝑓
} associated with the vertices of the polygon 𝑓 : If 𝜑△𝑖 are the (𝑛𝑓 + 1) Lagrange basis

functions (see Section 3) defined on the refined polygon, one can construct coarse shape functions
𝜑
𝑓

𝑖
associated with the polygon nodes as

𝜑
𝑓

𝑖
= 𝜑△𝑖 +𝑤𝑖𝜑

△
𝑓
, 𝑖 = 1, . . . , 𝑛𝑓 . (87)

Here, 𝜑△
𝑓
refers to the Lagrange basis function associated with the virtual vertex 𝑣 𝑓 and 𝑤𝑖 is

the respective entry in the affine weight vector w𝑓 previously used for the prolongation matrix.
Integrating these shape functions over the polygon mesh as described in Section 5.1.3 would lead
to the same discretized stiffness and mass matrices as defined in Equation (81) and Equation (82).
Given their construction, Bunge et al.’s shape functions are linear within each virtual triangle and
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can be integrated analytically, in contrast to the harmonic shape functions, which require more
expensive numerical integration.

5.2.2 Similarities to DEC. Interestingly, combining the prolongation matrix P with the standard
Lagrange basis functions {𝜑△1 , . . . 𝜑△|V△ | } defined on the refined triangle mesh allows us to reinterpret
the construction of the stiffness matrix L in Equation (81) as

L = dTE ★1 dE, (88)

which follows the same structure as the operators presented in Section 4. Here★1 denotes a polygon
equivalent of the so-called Hodge star operator acting on 1-forms, and the matrix dE ∈ R | E |× |V | is
the discrete differential operator

(dE)𝑘𝑙 =


−1 𝑙 = 𝑖

1 𝑙 = 𝑗

0 otherwise
(89)

taking 0-forms to 1-forms acting on edges (in contrast to the previously used coboundary operator d
that projects to halfedges). As in Equation (28), the indexing addresses the 𝑘-th row of the operator,
this time associated with the 𝑘-th edge 𝑒𝑖 𝑗 ∈ E. Bunge et al. define a suitable polygon Hodge star
by first constructing the respective basis functions for 1-forms: Since the coarse polygon basis
functions {𝜑1, . . . 𝜑 |V | } are associated with the vertices of the mesh M, they form a set of 0-forms
and can be expressed as

𝜑 𝑗 =

|V△ |∑︁
𝑖=1

P𝑖 𝑗𝜑△𝑖 . (90)

By construction, these bases form a partition of unity. Therefore, they can be used to define a set of
polygon Whitney bases [Arnold et al. 2006; Whitney 1957] for 1-forms, with

𝜑𝑖 𝑗 = 𝜑𝑖 · dE𝜑 𝑗 − 𝜑 𝑗 · dE𝜑𝑖 =
|V△ |∑︁
𝑙=1

𝑙∑︁
𝑘=1

P𝑘𝑖P𝑙 𝑗𝜑△𝑘𝑙 , (91)

being a 1-form associated to the polygon edge 𝑒𝑖 𝑗 ∈ E. In order to define a prolongation operator
that maps 1-forms from polygon edges to edges on the refined triangle mesh, Bunge et al. define a
second prolongation matrix P1 ∈ R | E△ |× | E | as

P1
(𝑖 𝑗 ) (𝑘𝑙 ) = P𝑖𝑘P𝑗𝑙 , (92)

with (𝑖 𝑗) indicating the row associated to the edge 𝑒△𝑖 𝑗 ∈ E△ on the refined mesh and (𝑘𝑙) the index
of the respective coarse polygon edge 𝑒𝑘𝑙 ∈ E. This matrix can be combined with the discrete
Hodge star ★1

△ on the refined triangle mesh, giving us

M1 = ★1 =
(
P1)T ★1

△ P
1 (93)

and

L = dTE
(
P1)T ★1

△ P
1dE . (94)

The question is if this inner product matrix M1 satisfies the same desiderata as for example the
matrices presented by Alexa and Wardetzky [2011] and de Goes et al. [2020], which remains to be
investigated.
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5.2.3 Laplacian on Volume Meshes. The previously described method can be intuitively extended
to arbitrary polyhedral meshes, but instead of virtual triangles, the meshM will be refined into
virtual tetrahedra. The first steps are analogous to the surface case, meaning that all faces 𝑓 ∈ F of
a given polyhedron 𝑐 ∈ C are refined into triangles with virtual vertices placed at the point that
minimizes the sum of squared triangle areas (see Equation (85)). To span the virtual tetrahedra,
Bunge et al. [2021] introduce an additional vertex x𝑐 inside of each cell, which is, similar to the
surface case, the affine combination of the cells’ refined faces vertex positions

x𝑐 =
∑︁

𝑣𝑖 ∈V(𝜕𝑐 )
𝑤𝑖 x𝑖 , with

∑︁
𝑣𝑖 ∈V(𝜕𝑐 )

𝑤𝑖 = 1. (95)

Here, V(𝜕𝑐) refers to the set of vertex indices that lie on the refined boundary of the polyhedron 𝑐 .
The position of x𝑐 is defined as the minimizer of the sum of squared tetrahedron volumes∑︁

𝑡𝑖 𝑗𝑘 ∈𝜕𝑐
vol

(
x𝑖 , x𝑗 , x𝑘 , x𝑐

)2
, (96)

with 𝑡𝑖 𝑗𝑘 being the refined triangles along the cell’s boundary. As for surfaces, this minimization
problem can be expressed with respect to a set of affine weights w𝑐 ∈ R |V (𝜕𝑐 ) | and assembled
into a local prolongation matrix P𝑐 . The only real difference of this approach is that the global
prolongation P is now divided into a two-step process, with the “surface” prolongation matrix P𝐹
inserting the virtual face points for all 𝑓 ∈ F and P𝐶 the cell points for all 𝑐 ∈ C, respectively,
giving us

P = P𝐶P𝐹 . (97)

The polyhedral stiffness and mass matrix are then obtained as in (81) and (82), with the slight change
that the refined matrices are the volumetric discretizations of the cotan formula (see Section 3.1).

5.3 Quadratic Virtual Refinement Method
All of the previously discussed FEM methods share a common characteristic: They define piecewise
linear basis functions. This means that the respective shape functions are associated with the
vertex nodes of the given polygon. Using this kind of bases is common practice in geometry
processing due to their balanced trade-off between accuracy and efficiency. Nevertheless, it is
well-acknowledged that higher-order shape functions typically lead to more accurate results and
faster convergence rates [Schneider et al. 2022]. However, this advantage comes at a cost, as
these functions have additional degrees of freedom that result in denser, larger matrices, which
consequently increase computational complexity. Nonetheless, several works investigated and
utilized higher-order polynomials in the context of arbitrary polygonal and polyhedral meshes.
For instance, Beirao et al. [2017] analyzed them in the context of the virtual element method
for three-dimensional problems. Schneider et al. [2018], on the other hand, used a spline-based
approach to achieve higher convergence rates on hex-dominant meshes. Furthermore, the 2D
polygonal finite element basis introduced by Aurojyoti et al. [2019] achieves global 𝐶1 smoothness
by elevating the degree of generalized barycentric coordinates through Bernstein-Bezier functions.
In the following, we will review the method introduced by Bunge et al. [2022], which extends the
previously defined linear polygon shape functions (Section 5.2) to quadratic Lagrange elements on
polygonal and polyhedral meshes.

5.3.1 Quadratic Basis function for Polygons. As in the linear setting, assume we are given a polygon
(x1, . . . , x𝑛𝑓

) ⊂ R3 and its corresponding virtual face vertex 𝑣 𝑓 , still defined as the minimizer of
the sum of squared triangle areas. In order to define quadratic shape functions, it is no longer
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sufficient to only consider basis functions associated with the origi-
nal nodes of the polygon. Instead, one has to introduce additional de-
grees of freedom at the edges, whether real or virtual, as illustrated
in the inset figure (taken from [Bunge et al. 2022]). Consequently,
instead of the previous 𝑛𝑓 vertices of the polygon, higher-order
shape functions require 2𝑛𝑓 degrees of freedom at the polygon
boundary, which the authors refer to as coarse nodes C (depicted
in green). Furthermore, along with the virtual face vertex, they
introduce 𝑛𝑓 additional virtual nodes positioned on the interior
edges, leading to 𝑛𝑓 + 1 virtual degrees of freedom denoted by K
(shown in red). The union of these sets is referred to as fine nodes
F = C⋃K and their locations are denoted by x𝑖 ∈ R3.
On the virtual triangulation, the linear Lagrange basis functions

(Equation (10)) are exchanged for the quadratic Lagrange basis𝜓𝑖

associated with the fine nodes F . Since the additional virtual edge nodes are involved in the
construction of the basis functions, Bunge et al. defined 𝑛𝑓 + 1 sets of weights w𝑗 = (𝑤𝑖 𝑗 ) ∈ R𝑛𝑓 to
redistribute the virtual degrees of freedom 𝑗 to coarse nodes 𝑖 , forming local shape functions 𝜑𝑖 of
the form

𝜑𝑖 = 𝜓𝑖 +
∑︁
𝑗∈K

𝑤𝑖 𝑗𝜓 𝑗 for 𝑖 ∈ C. (98)

The construction of the prolongationmatrix is analogous to the linear case described in Equation (79).
The only difference are the additional virtual vertices. The local prolongation matrix is for a face 𝑓
is given by

P𝑓

𝑖 𝑗
=

{
𝛿𝑖 𝑗 𝑖 ∈ C,
𝑤 𝑗𝑖 𝑖 ∈ K,

and the per-face prolongation matrices are assembled into the global prolongation matrix P.

Interpolation. The shape functions constructed according to (98) conform naturally to the La-
grange interpolation property 𝜑𝑖 (x𝑗 ) = 𝛿𝑖 𝑗 for all coarse nodes 𝑗 ∈ C, since the fine basis satisfies
𝜓𝑖 (x𝑗 ) = 0 for all 𝑖 ∈ K and 𝑗 ∈ C. This is important, since it ensures 𝐶0 continuity across polygon
edges: The function values for each shape function are either zero at the polygon edge or the unique
quadratic function satisfying the Lagrange interpolation conditions at the three nodes along that
edge. Consequently, the prolongation weights𝑤𝑖 𝑗 can be chosen independently for each polygon.
Within each element, the shape functions 𝜑𝑖 are also able to retain 𝐶0 continuity, since they are
linear combinations of the 𝐶0 functions𝜓𝑖 .
However, this is not the case for 𝐶1 continuity. In general, the functions are not necessarily 𝐶1

across the virtual edges connecting polygon vertices to the virtual vertex. This stems from the fact
that the standard triangle quadratic shape functions𝜓𝑖 typically lack 𝐶1 continuity across element
edges. Left unresolved, as discussed in the original paper, this issue could present a problem. In
order to guarantee the desired cubic convergence rate for the Laplacian discretized with these
shape functions, it is necessary to maintain 𝐶1 continuity within the element. Bunge et al. [2022]
address this concern with a specific set of prolongation weights, which will be discussed next.

Variational energy minimization. Since the fine shape functions𝜓𝑖 are generally not 𝐶1 across
virtual edges, their linear combination is not guaranteed to be either. The new prolongation weights
defined by Bunge et al. [2022] replace the 𝐿2 minimizing constraint from their linear approach
with the squared gradient difference integrated along all virtual edges, summed over all coarse
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Fig. 5. Prolongation weights computed using a regularizer on their norm lead to very local basis functions at
the cost of smoothness (left). The squared gradient difference energy explicitly leads to basis functions that
prioritize smoothness across internal edges (right). The figure was taken from [Bunge et al. 2022].

basis functions. This energy helps to minimize the discontinuities between the shape functions’
gradients along the virtual edges, as highlighted in Figure 5, leading to significantly smoother shape
functions. They are obtained by solving the quadratic optimization problem

𝑊 = arg min
𝑊

∑︁
𝑖∈C

∑︁
𝜎∈E∗

∫
𝜎

∥∇+
𝜎𝜑𝑖 − ∇−

𝜎𝜑𝑖 ∥2 d𝜎 (99)

with respect to the set of prolongation weights𝑊 = {𝑤𝑖 𝑗 }. Here E∗ is the subset of edges in the
virtual triangulation that are incident to the virtual vertex (E∗ = {(v0, v𝑖 )}1≤𝑖≤𝑛). The operator ∇+

𝜎

represents the gradient with respect to the right triangle of the edge and the operator ∇−
𝜎 with

respect to the left one. Furthermore, two additional constraints are included in the system. Just as
in the linear case, partition of unity ∑︁

𝑖∈C
𝑤𝑖 𝑗 = 1 for 𝑗 ∈ K (100)

must be satisfied. Additionally, the positions of the virtual nodes have to be reproduced through
affine combinations of the coarse nodes

x𝑗 =
∑︁
𝑖∈C

𝑤𝑖 𝑗x𝑖 for 𝑗 ∈ K . (101)

In cases where a particular set of weights results in an energy of zero, all basis functions confined
to the polygon attain 𝐶1 continuity.

For higher-order shape functions, additionally to constant and linear precision (see Equation (67)
and Equation (68)), the ability to accurately reproduce quadratic functions is another crucial criterion
that has to be be met. All three conditions together ensure the desired faster convergence rate. The
basis functions obtained with the alternative prolongation weights are able to satisfy all of these
properties and reproduce the original quadratic Lagrange basis functions on triangles. However,
we direct the reader to the original work [Bunge et al. 2022] for proofs and demonstrations.

5.3.2 Quadratic Basis Function for Polyhedra. As in Section 5.2.3, the energy described in Equa-
tion (99) can be extended to volume meshes by considering virtual tetrahedra instead of virtual
triangles. The virtual face vertices on the polyhedron’s boundary remain the respective minimizer of
the sum of squared triangle areas: The position of the virtual polyhedron vertex minimizes the sum
of squared tetrahedra volumes (see Equation (96)) of the resulting tessellation. The only difference
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Fig. 6. Node positions for a refined cube. All faces are split into triangles using virtual vertices. The volume is
decomposed into tetrahedra by introducing a central virtual vertex which is connected to all face triangles.
Figure taken from [Bunge et al. 2022].

are additional midpoint nodes introduced at each edge of the polyhedron. As in the surface case,
they are necessary degrees of freedom for the 3D quadratic Lagrange basis (see Figure 6). The
authors distinguish between three types of nodes, as indicated by the colors in Figure 6. Level 1
nodes (green) are degrees of freedom that are defined with respect to the polyhedron itself, whereas
level 2 (red) and level 3 (blue) nodes depend on virtual vertices. The final shape functions are
defined at the coarse nodes (green), after the prolongation process redistributes the basis functions
𝜓 𝑗 associated with the virtual nodes (red and blue). The volumetric equivalent to the quadratic
energy (99) is conceptually very similar to its surface counterpart. Rather than integrating along
virtual edges, the squared gradient difference of the shape functions is integrated over virtual
triangles shared by two tetrahedra. Consequently, triangles that tessellate the boundary of the
polyhedron are not considered. The complete energy, including constraints, is defined as follows

𝑊 = arg min
𝑊

∑︁
𝑖∈C

∑︁
𝜎∈T∗

∫
𝜎

∥∇+
𝜎𝜑𝑖 − ∇−

𝜎𝜑𝑖 ∥2 d𝜎

s.t. constraints (100) and (101) are satisified.
(102)

In this context, T ∗ denotes a subset of triangles in the virtual tetrahedralization of the polyhedron,
each of which is incident upon the virtual polyhedral vertex. Here, the symbols ∇+

𝜎 and ∇−
𝜎 represent

the gradients of 𝜑𝑖 on the tetrahedron to the right and left of the shared face 𝜎 , respectively.
However, in contrast to the surface scenario, minimizing the system in its current state would

result in shape functions that no longer satisfy𝐶0 continuity between adjacent polyhedral cells. The
underlying cause for this are the shared virtual vertices situated on the respective boundary face of
the cells. The weights that minimize Equation (102) redistribute the influence of virtual nodes by
integrating the gradient mismatch over triangles within a polyhedron, while disregarding triangles
located on the element’s boundary. Consequently, the redistribution of the virtual face vertices is
dependent on the specific cell over which the prolongation weights are computed. As a result, there
is no inherent requirement for the redistribution to be identical between adjacent polyhedra. In the
case of polygons, no virtual node shares a common edge with an adjoining element. Therefore,
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their associated fine basis functions are defined within a single polygon and the 𝐶0 continuity
between adjacent faces is not affected.

In order to address the problem, Bunge et al. [2022] split the prolongation into two steps:

(1) For each boundary face, initial prolongation weights are computed that satisfying Equa-
tion (99), distributing level 2 nodes to level 1 nodes.

(2) Then, Equation (102) is solved, where the prolongation weights obtained in the first step are
included as hard constraints.

This amounts to first solving for a variational basis on the boundary of the polyhedron, and then
adjusting the values of the basis functions in the interior of the polyhedron so as to minimize the
cross-edge gradient difference there as well. By construction, the per-face prolongation weights
computed in the first step, are defined by optimizing for𝐶1 continuity within boundary faces. Thus,
two face-adjacent polyhedra necessarily distribute a level 2 node in the same way and the derived
basis is guaranteed to be continuous. As in the 2D case, the quadratic Lagrange basis functions are
reproduced when computed on arbitrary tetrahedra, independent of the choice of virtual vertex
[Bunge et al. 2022].

5.4 Key Outcomes
One of the main benefits of the presented FEM methods, in contrast to the operators described in
the Mimetic Polygon Laplacian section, is that they can all be applied to surface as well as volume
meshes. However, the harmonic shape functions are restricted to planar polygons and boundary
faces, while the linear and quadratic virtual refinement methods are able to deal with non-planar
elements. Still, the extension to volume meshes and the option to use higher-order shape functions
lead to an enhanced flexibility for the computer graphics community and its range of applications.
Furthermore, besides being able to construct all the operators we already described, having explicit
shape functions allows us to interpolate any given function within the polytopes if we know
its values at the vertex positions. In relation to the MFD operators, since the virtual refinement
method allows for a reinterpretation of the Laplacian in the same inner product structure, future
analysis could further investigate the relation between FEM andMFD approaches and their different
qualities.

6 FINITE VOLUME DISCRETIZATIONS
The finite volume method (FV) was originally introduced by Dusinberre [1961; 1955] for the heat
equation and can be used on all differential equations that can be expressed through the divergence
operator. It follows the idea that the integral of a differential over a small volume can be expressed
as a surface integral of the fluxes over the boundary of the same cell [Rapp 2017]. As the MFD, finite
volume discretizations can be considered mimetic since they try to enforce balance equations for
mass, momentum, and energy on each cell [Lipnikov et al. 2014], conservation properties that make
them well suited for fluid mechanic problems. However, the basic derivation of the 2D Laplace
operator with FV assumes a Delaunay triangle mesh, more specifically orthogonal dual and primal
edges, in order to prevent negative coefficients. To avoid this restriction, Bunge et al. [2021] used
a special polygonal variant of the FV, called Discrete Duality Finite Volume (DDFV) [Coudière
and Hubert 2011; Domelevo and Omnés 2005; Hermeline 2000, 2009] and combined this technique
with their previously described virtual triangle refinement to define a gradient, divergence and
Laplacian operator for polygonal and polyhedral meshes.
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Fig. 7. A 2D DDFV diamond cell spanned between the primal edge x1, x2 and the virtual dual vertices x𝑙 , x𝑟 .
The vectors e𝑖 𝑗⊥ are orthogonal to the diamond edges and involved construction of the gradient operator.
The figure was taken from [Bunge et al. 2021].

6.1 Discrete Duality Finite Volume Method
Wewill shortly revisit the definition of a 2D gradient operator constructed with the DDFV approach.
Given a planar polygonal surface meshM, we consider a second set of vertices, called dual vertices
V∗, associated with the barycenter of each face 𝑓 ∈ F . For each edge 𝑒 ∈ E, they are able to span
a so-called diamond cell 𝐷 , consisting of the vertex pair 𝑣1, 𝑣2 connected by 𝑒 and the dual vertices
𝑣𝑙 , 𝑣𝑟 associated to the faces adjacent to the edge (see Figure 7). The diamond cell always forms a
rectangular shape with edge vectors e𝑖 𝑗 = x𝑗 − x𝑖 in R2 assigned to the edge tuples (𝑖, 𝑗) ∈ 𝐷 . On
these diamonds, the DDFV method uses Stokes’ theorem in order to define a local gradient for a
function 𝑢 in the following way∬

𝐷

∇𝑢 (x) dx =

∫
𝜕𝐷

𝑢 (x) n(x) dx (103)

=
∑︁

(𝑖, 𝑗 ) ∈𝜕𝐷

e⊥𝑖 𝑗e𝑖 𝑗
∫ 1

0

e𝑖 𝑗 (
(1 − 𝑡)𝑢𝑖 + 𝑡𝑢 𝑗

)
d𝑡 (104)

=
∑︁

(𝑖, 𝑗 ) ∈𝜕𝐷
e⊥𝑖 𝑗

𝑢𝑖 + 𝑢 𝑗

2
. (105)

Here𝑢𝑖 denotes the function values associated to the vertex 𝑣𝑖 and n(x) ∈ R2 is an outward pointing
normal vector at point x along the boundary of the diamond. Therefore, the gradient operator can
be solely expressed through the four outward rotated edge vectors of the respective diamond. One of
the many benefits of the DDFV method is the discrete duality property between its discrete gradient
and divergence operators, also known as Green’s “integration-by-parts” formulas [Andreianov
et al. 2012; Lipnikov et al. 2014]. This property is an essential part of the finite volume setting.

6.2 Diamond Laplace for Surface Meshes
Bunge et al. [2021] adapt the previously defined DDFV gradient operator in two ways to extend it
to polygon surface meshes embedded in 3D:

• First, they reduce the systems’ dimension by expressing the values at the dual vertices as
affine combinations of the original primal vertices with the help of the previously introduced
face prolongation matrix P (see Equation (80)). As in Section 5.2, the position of the dual
vertices is the minimizer of the sum of squared triangle areas of the refined face.
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• Second, they define an intrinsic gradient operator associated with the (not necessarily planar)
diamond cells, allowing them to directly apply the formula defined in Equation (105).

Given a diamond cell 𝐷 with vertices (𝑣1, 𝑣2, 𝑣𝑙 , 𝑣𝑟 ) embedded in R3, the first objective is to isometri-
cally unfold the planar triangles along their shared edge into a plane. The new 2D coordinates can
then be used to construct the diamonds gradient operator G𝐷 ∈ R2×4. For each column 𝑖 associated
with a vertex it is defined as

G𝐷 (:, 𝑖) =
1

2 |𝐷 |
∑︁

(𝑖, 𝑗 ) ∈𝜕𝐷
ẽ⊥𝑖 𝑗 , (106)

where |𝐷 | denotes the diamond’s area and ẽ⊥𝑖 𝑗 ∈ R2 orthogonal vectors to the intrinsic 2D diamond
edges. These local gradient matrices are then assembled into a global operator G⋄ ∈ R2 | E |×( |V |+| F | )

defined on the refined triangle mesh M△. Combined with the surface prolongation matrix P (see
Equation (80)), we obtain a gradient operator for the original polygon mesh through

G = G⋄P. (107)

This operator maps function values 𝑢𝑖 associated with the primal vertices 𝑣𝑖 ∈ V to intrinsic
gradient vectors ∇𝑢 |𝐷 ∈ R2 associated to the diamond cells spanned on the virtual triangle mesh
M△. Following the DDFV discretization of the divergence, Bunge et al. [2021] define their diamond
divercence operator as

D = PTGT
⋄M̂⋄ (108)

where M̂⋄ ∈ R2 | E |×2 | E | is a diagonal matrix containing the diamond 𝐷𝑖 ’s area |𝐷𝑖 | in its diagonal
entries with indices 2𝑖 and 2𝑖 +1. The final stiffness matrix is then directly derived from its definition
as the divergence of the gradient and given by

L = DG = PTGT
⋄M̂⋄G⋄P, (109)

mapping from vertices to vertices. The diamond version of the mass matrix required for the strong
formulation L of the Laplacian is defined as

M = PTM⋄P. (110)

It is derived from the standard DDFV diagonal mass matrix M⋄ ∈ R( |V |+| F | )×( |V |+| F | ) that dis-
tributes the diamond areas to the primal and dual vertices:

(M⋄)𝑖𝑖 =


∑

𝐷∋𝑣𝑖
|𝐷 |
4 if 𝑣𝑖 ∈ V∑

𝐷∋𝑣𝑖
|𝐷 |
4 if 𝑣𝑖 ∈ V∗

0 otherwise.
(111)

6.2.1 Diamond Laplace for VolumeMeshes. As in Section 5.2.3, Bunge et al. [2021] define a Laplacian
operator for general polyhedra by refining the given mesh M into a virtual tetrahedral meshM△.
However, as for the surface case, they once again interpret the added virtual cell vertices as the
required dual verticesV∗ in order to divide the mesh into volumetric diamond cells D. Since the
refinement divides the original mesh into virtual tetrahedra, they can consider any combination of
cells 𝑐△ ∈ C△ as a region Ω bounded by a triangulated surface with 𝑛△𝑐 vertices. Therefore, Bunge
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Fig. 8. A minimal diamond associated with the primal edge x1, x2 on the face 𝑓 with virtual face vertex x𝑓 .
The virtual cell vertices x𝑙 and x𝑟 of the adjacent polyhedra form the respective tips of the diamond. The
figure was taken from [Bunge et al. 2021].

et al. [2021] can once again discretize the gradient of a function 𝑢 over Ω with the help of Stokes’
theorem: ∭

Ω
∇𝑢 (x) dx =

∬
𝜕Ω

𝑢 (x)n(x) dx (112)

=
∑︁

𝑡𝑖 𝑗𝑘 ∈𝜕Ω

a𝑖 𝑗𝑘a𝑖 𝑗𝑘
∫ 1

0

∫ 𝑡

0

a𝑖 𝑗𝑘 (
(1 − 𝑠 − 𝑡)𝑢𝑖 + 𝑠𝑢 𝑗 + 𝑡𝑢𝑘

)
d𝑠 d𝑡 (113)

=
∑︁

𝑡𝑖 𝑗𝑘 ∈𝜕Ω
a𝑖 𝑗𝑘

𝑢𝑖 + 𝑢 𝑗 + 𝑢𝑘
3

, (114)

where

a𝑖 𝑗𝑘 =
1
2
(x𝑗 − x𝑖 ) × (x𝑘 − x𝑖 ) (115)

denotes the outward pointing face normal of the boundary triangle 𝑡𝑖 𝑗𝑘 whose magnitude equals��𝑡𝑖 𝑗𝑘 ��. Therefore, the column-wise matrix representation of ∇𝑢 over Ω can be written as

GΩ (:, 𝑖) =
1

3 |Ω |
∑︁

𝑡𝑖 𝑗𝑘 ∈𝜕Ω
a𝑖 𝑗𝑘 ∈ R3×𝑛△𝑐 , (116)

which is consistent with the 2D discretization (see Equation (106)). The only remaining question
is how to define suitable volumetric diamond cells. Here, Bunge et al. define a so called minimal
diamond consisting of two adjacent virtual tetrahedra. The tips are formed by the virtual cell
vertices 𝑣𝑙 and 𝑣𝑟 of the adjacent polyhedra and its base triangle (x𝑓 , x𝑖 , x𝑗 ) is defined by a shared
edge 𝑒𝑖 𝑗 and its connection to the virtual face vertex 𝑣 𝑓 of the shared face 𝑓 (see Figure 8). This
seems unintuitive on the first glance, since the larger region spanned by all edges of 𝑓 connected to
𝑣𝑙 and 𝑣 𝑓 equally forms an integrable region independent of the faces surface. However, the authors
point out that this choice for the diamond cell could lead to spurious modes, which describes a
Laplacian with a kernel that contains more than constant functions and can cause severe numerical
artifacts. Spurious modes are a known limitation to some DDFV methods like [Hermeline 2009],
as discussed by [Andreianov et al. 2013]. The focus on the null space of a discrete operator and
avoiding numerically polluting modes is also a very important aspect of the MFD method [Lipnikov
et al. 2014] and, as previously discussed, motivate the stabilization terms of the inner products
introduced in the works of [Alexa and Wardetzky 2011] and [de Goes et al. 2020] explained in
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Section 4.1.2 and Section 4.2.2. Using Equation (116), Bunge et al. define a local gradient G𝐷 ∈ R3×5

per minimal diamond cell 𝐷 that can be assembled into a global gradient matrix G⋄ defined on the
refined mesh. Combined with the volume prolongation matrix P defined in Equation (97) we get a
polyhedral gradient operator

G = G⋄P, (117)

its compatible divergence operator

D = PTG⋄M̂⋄, (118)

with M̂⋄ being a diagonal matrix containing the diamond volumes, and finally the generalized
stiffness matrix

L = DG. (119)

The mass matrix M is obtained as in the surface case:

M = PTM⋄P, (120)

but with M⋄ now distributing the volumes of the minimal diamonds among the involved vertices
and being defined as

(M⋄)𝑖𝑖 =


∑

𝐷∋𝑣𝑖
|𝐷 |
6 if 𝑣𝑖 ∈ V∑

𝐷∋𝑣𝑖
|𝐷 |
6 if 𝑣𝑖 ∈ V△\(V ∪V∗)∑

𝐷∋𝑣𝑖
|𝐷 |
4 if 𝑣𝑖 ∈ V∗

0 otherwise.

(121)

6.3 Key Outcomes
As for the FEM methods, the diamond Laplacian can be applied to both surface and volume meshes
with possible non-planar faces. In contrast to the previous operators, the influence of the DDFV
background causes its focus to lie more on the construction of a plausible gradient and divergence
operator, which can both be constructed intrinsically. The diamond structure combined with the
prolongation steps leads to a larger local neighborhood, which can yield more accurate results (see
Section 8), but also causes denser and therefore more costly system matrices.

7 PROPERTIES OF THE POLYGON LAPLACIANS
In this section, we analyze each of the previously introduced polygon and polyhedral Laplacians
based on the properties established by Wardetzky et al. [2007] (see Section 2.1). Since all methods
fail to satisfy the maximum principle, but are otherwise able to retain the remaining properties, we
will structure the upcoming section accordingly. Therefore, this section will focus more on notable
differences within the derivations and proofs of the individual properties instead of differences
between the actual operators themselves.

7.1 Symmetry
Each of the presented Laplace operators fulfills symmetry by construction. As the products of
individual symmetric or diagonal matrices, the respective inner product matricesM𝑓 introduced in
both [Alexa and Wardetzky 2011] and [de Goes et al. 2020] are symmetric as well. Therefore, given
that the local stiffness matrix is defined as dT

𝑓
M𝑓 d𝑓 , it and the globally assembled weak form fulfill

this property.
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Since the FEM stiffness matrix is defined as the integrated dot product of the shape functions’
gradients, the property follows naturally for the operators introduced by [Martin et al. 2008],
[Bunge et al. 2020] and [Bunge et al. 2022].

In case of the diamond Laplacian, it follows from the definition of the weak form as

L = DG = PTGT
⋄M̂⋄G⋄P (122)

and M̂⋄ being a diagonal matrix.

7.2 Locality
All methods, with the exception of [Bunge et al. 2021], define their involved matrices or shape
functions locally per polygon or polyhedron. This implies that their respective influence is restricted
to the boundary of the individual elements. Therefore, for operators discretized with linear degrees
of freedom, the stencil of the Laplacian associatedwith a single vertex 𝑣𝑖 involves all face/cell vertices
of the polygons/polyhedrons where 𝑣𝑖 itself is a part of, which leads to a local neighborhood. For
the higher-order Lapalacian introduced by [Bunge et al. 2022], the neighborhood also includes the
respective edge nodes. However, the diamond Laplacian has a larger stencil than the other operators.
Since the diamond structure connects adjacent cells on the refined mesh and the prolongation
process distributes values at virtual vertices back to all original face/cell nodes, its neighborhood
for a vertex 𝑣𝑖 consists of the same vertices as the other methods, and additionally those that are
part of a cell/face sharing a face/edge with the primitives surrounding 𝑣𝑖 .

7.3 Linear Precision.
In contrast to the previous two properties, linear precision does not automatically follow from each
operator’s construction and must be proven individually.

Alexa and Wardetzky. For the Laplacian introduced by Alexa and Wardetzky, similarly to the
cotan Laplacian, the proof is based on the area gradient of the polygon with respect to its vertices.
Consider the vertex 𝑣𝑖 to lie in a planar neighborhood. Starting with Equation (7), we have to focus
on two terms in order to show linear precision for Alexa and Wardetzky’s operator:

L̃𝑓 X𝑓 = dT
𝑓
M̃𝑓 d𝑓 X𝑓 , (123)

where

L̃𝑓 := dT
𝑓
M̃𝑓 d𝑓 (124)

with M̃𝑓 being the inner product matrix defined by Brezzi et al. [2005] (see Equation (32)), and

dT
𝑓
C𝑓 U𝑓 C

T
𝑓
d𝑓 X𝑓 . (125)

As shown in Equation (34), the latter term vanishes for planar polygons, leaving us with the
remaining part L̃𝑓 X𝑓 . As shown in Lemma 3 in the original paper, the 𝑖-th row of this matrix is
equivalent to the polygon’s area gradient at vertex 𝑣𝑖 :

∇x𝑖 |𝑓 | =
(
L̃𝑓 X𝑓

)
𝑖
. (126)

Therefore, the expression (LX)𝑖 is equal to the sum over the area gradients of the adjacent faces
with respect to the vertex 𝑣𝑖 . Given that the neighborhood is planar, this sum becomes zero since
moving the vertex in any direction in the plane would leave the area unchanged.
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De Goes et al. For de Goes et al.’s Laplacian [de Goes et al. 2020], we proceed in the same fashion
as for Alexa and Wardetzky and consider the individual terms of the inner product matrix, starting
with the projection:

P𝑓 d𝑓 X𝑓 = P𝑓 E𝑓 . (127)

As mentioned by the authors, P𝑓 actually eliminates all discrete 1-forms in the image of

V♭
𝑓
= E𝑓

(
I − n𝑓 nT𝑓

)
. (128)

Therefore, the projection term vanishes if applied to E𝑓 . As described in Section 4.4, since the vertex
𝑣𝑖 is surrounded by planar polygons, the remaining inner product term is equal to L̃𝑓 X𝑓 for each
individual face 𝑓 , allowing for the same area gradient interpretation.

Harmonic Coordinates. In the finite element theory, a common practice is to ensure that shape
functions pass the so-called patch test, which verifies if they are able to fulfill the linear precision
property we defined in Equation (68). A variant of the requirements the shape functions have tomeet
in order to pass the patch test are the exact same as our definition of the linear precision property
for Laplacians [Zienkiewicz et al. 2013]. Therefore, given that the harmonic shape functions are
linearly precise, Martin et al.’s Laplacian satisfies this property as well. In fact, as discussed by
the authors in the original paper, the linear polynomial introduced in Equation (72) is crucial to
guarantee exact linear precision, and therefore this property, independent of the number of chosen
kernels.

Linear Virtual Refinement Method. For volume meshes, the linear precision property is satisfied
if for all linear functions u sampled on the mesh, the Laplacian Lu is exact at the interior vertices
of the mesh [Alexa et al. 2020]. As for surfaces, an equivalent expression can be formulated as

(LX)𝑖 = 0, (129)

which has to be satisfied for all interior vertices 𝑣𝑖 . For surface meshes, given that the elements
surrounding the interior vertex 𝑣𝑖 are planar, the refined triangles of these primitives are planar as
well, since the position of the virtual vertex is an affine combination of the existing face vertices.
The cotangent Laplacian has linear precision, so any linear function u sampled at the vertices and
prolonged to the refined mesh u△ = Pu satisfies

(L△u△)𝑖 = 0 (130)

for the interior vertex 𝑣𝑖 and all virtual vertices of its surrounding faces. These are exactly the
values on the refined mesh that account for the value of the polygon Laplacian at 𝑣𝑖 , since each
value associated to the virtual vertices is redistributed to the original nodes of the mesh by applying
PT to L△u△. Them all being zero gives us (Lu)𝑖 = 0. Given that the cotan Laplacian for volume
meshes also satisfies linear precision, the same arguments apply for polyhedral meshes.

Quadratic Virtual Refinement Method. As proven in the original paper, the quadratic shape
functions defined by Bunge et al. [2022] are linearly precise, which is a direct consequence of
the reproduction property enforced as constraint (see Equation (101)). Therefore, Bunge et al.’s
Laplacian satisfies this property as well.

Diamond Laplacian. Knowing that the DDFV Laplacian GT
⋄M̂⋄G⋄ satisfies linear precision on

the refined mesh [Chuang et al. 2009; Domelevo and Omnés 2005; Hermeline 2009], applying the
full-rank prolongation matrices preserves this property.
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7.4 Positive Semi-Definiteness and Null Space
For Martin et al.’s and Bunge et al.’s operators [Bunge et al. 2020, 2022; Martin et al. 2008], given
that their Laplacians follow the standard FEM approach, the respective stiffness matrices fulfill
both properties by construction and do not require individual proofs.

In case of Alexa and Wardetzky [2011] and de Goes et al. [2020], the strict positive definiteness
of their respective inner product matricesM1 is a fundamental building block in their derivation
process, which leads to a kernel that contains only the zero vector. Furthermore, given its con-
struction, the kernel of the coboundary operator d contains only constant functions. Combining
these two matrices into dTM1d therefore yields a positive semi-definite stiffness matrix with a
one-dimensional kernel consisting of constant functions.

For the diamond Laplacian, the diagonal matrix M̂⋄ is symmetric positive definite for both surface
and volume meshes. The prolongation matrix P has full rank and therefore the constructed stiffness
matrix is also positive semi-definite. However, the dimension of the null space requires further
explanation. While it is obvious that constant functions, given its definition, lie in the kernel of
the gradient, it remains to be shown that they are the only ones that do. As mentioned by Bunge
et al. [2021], both the gradient of a minimal diamond and a 2D diamond cell can be interpreted
as the gradient of an affine function fitted to the function values of the edge midpoints of the
respective cell. The gradient will therefore vanish if all function values associated to the midpoints
are identical. However, this can only be satisfied if the function values at the dual and primal
vertices of the respective diamond are identical as well. Furthermore, since the diamonds share the
function values with their adjacent cells along the common boundary element, this requirement
propagates through the complete mesh, leaving only room for constant functions.

7.5 Maximum Principle
As previously mentioned, all of the presented Laplacians are not able to fulfill the maximum
principle for general meshes. In case of the Diamond Laplacian, failing to satisfy the maximum
principle is a known limitation of the DDFV scheme [Quenjel et al. 2020], which can not be rectified
by applying the prolongation matrices. The same holds for the quadratic virtual refinement method.
As stated by Höhn and Mittelmann [1981], quadratic Lagrange elements are only able to satisfy the
discrete maximum principle under extremely restrictive assumptions on the mesh and can not be
recovered by the prolongation step. All other methods reproduce the cotan Laplacian on triangle
meshes, which is also not able to retain this property as discussed in Section 3.

8 EVALUATION
In this section, we compare the performance of the presented Laplace operators in a number of
different computer graphics applications for both surface and volume meshes. We are interested in
the influence of the respective parameters _ described by Alexa and Wardetzky [2011] and de Goes
et al. [2020] and how they affect the quality of the inner product matrix. Therefore, we analyze a
selection of values besides the recommended choices of the authors. Concerning the placement
of the virtual vertices, we follow the recommendations of Bunge et al. [2021; 2020] and use the
squared triangle area and squared tetrahedra volume minimizer, respectively. For the harmonic
shape functions [Martin et al. 2008], we noticed that the number of chosen kernels and control
points strongly affects the results on our chosen test meshes (see Figure 9). We analyzed different
numbers of kernels with𝑚 = 4𝑛 collocation points instead of the recommended ratio of𝑚 = 3𝑛
from the original paper, since it yielded slightly more accurate results in our setting. Based on this
evaluation, we increased the number of edge kernel/collocation points for surface meshes to 20/90
and used the recommended 3/9 points per edge and 10/30 per face for the volumetric tessellations.
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Fig. 9. Effect of the number of chosen kernels and collocation points on the convergence behavior of the
harmonic shape functions on the Voronoi plane (left) and hexagon sphere (right). The shown 𝐿2 errors refer to
the Poisson systems solved for Franke’s test function on planar grids and for the sphercial harmonic function
𝑌 3

2 on unit spheres respectively.

The choice was also influenced by the numerical costs involved in using more samples, explaining
the lower sample sizes for volume meshes. The triangles and tetrahedra used for the numerical
integration are the same as the virtual elements used for the virtual refinement method. Given that
the integration of the shape functions is not exact, using a more elaborate tessellation technique
could further improve the results. The figures in the evaluation will feature certain labels for some
methods to improve clarity. We will refer to the the harmonic shape functions by Martin et al. [2008]
as “Harmonic”. The linear and quadratic virtual refinement methods by Bunge et al. [2020; 2022]
will be referred to as “Lin. Virt. Ref” and “Quad. Virt. Ref” respectively and the Diamond Laplacian
by Bunge et al. [2021] will be called “Diamond”.

8.1 Poisson Equation
We analyze the convergence behavior of the different Laplacians by solving the Poisson equation
−Δ𝑢 = 𝑓 with Dirichlet boundary conditions on various refined tessellations of the unit square and
cube. We chose the 2D and 3D Franke test functions [Franke 1979] for the right hand side 𝑓 and
solve the discrete system

Lu = Mb, (131)

with b ∈ R |V | containing the values of the analytic Laplacian Δ𝑓 of the respective test function
sampled at the vertices. The solution u is then compared to the analytic values of 𝑓 . The exact
formulas of the Franke test functions are

𝑓2D (𝑥,𝑦) =
3
4

e−
(9𝑥−2)2+(9𝑦−2)2

4 + 3
4

e−
(9𝑥+1)2

49 − 9𝑦+1
10

+1
2

e−
(9𝑥−7)2+(9𝑦−3)2

4 − 1
5

e−(9𝑥−4)2−(9𝑦−7)2
(132)
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Fig. 10. 𝐿2 error in log-log scale of the Poisson system solved for Franke’s test function on planar grids with
triangles (left), quads (center left), Voronoi cells (center right), and concave faces (right). Since all methods,
with the exception of the Diamond Laplace, are equivalent to the cotangent Laplacian on triangle meshes,
the lines overlap in the leftmost plot.

and

𝑓3D (𝑥,𝑦, 𝑧) =
3
4

e−
(9𝑥−2)2+(9𝑦−2)2+(9𝑧−2)2

4 + 3
4

e−
(9𝑥+1)2

49 − 9𝑦+1
10 − 9𝑧+1

10

+1
2

e−
(9𝑥−7)2+(9𝑦−3)2+(9𝑧−5)2

4

−1
5

e−(9𝑥−4)2−(9𝑦−7)2−(9𝑧−5)2
.

(133)

Figure 10 showcases the 𝐿2 error rates from solving the Franke Poisson system on different surface
meshes. Each Laplacian is able to reproduce the expected quadratic or cubic convergence rate across
all tessellations. In terms of accuracy, both operators introduced by Alexa and Wardetzky [2011]
and de Goes et al. [2020] are able to produce high quality results for _ = 1 on quad and Voronoi
meshes. On concave surfaces, de Goes et al. with parameter _ = 0.5 yields the lowest errors, closely
followed by the operator presented by Bunge et al. [2020]. The Diamond Laplacian consistently
maintains low error rates and since it is not reduced to the cotangent Laplacian, it also yields better
results on the triangle grid.
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Fig. 11. 𝐿2 error in log-log scale of the Poisson system solved for Franke’s test function on unit cubes tessellated
with hexahedra (left), pyramids (center left), truncated cells (center right), and Voronoi cells (right).

The error rates for the volumetric scenario are depicted in Figure 11. As before, the Diamond
Laplacian is the most accurate operator with linear degrees of freedom, while both methods
from Bunge et al. [2020] and Martin et al. [2008] yield qualitatively similar results. However,
the harmonic shape functions are very expensive due to the solving process involved in their
construction, especially for volume meshes, while the method from Bunge et al. [2020] is the
fastest (see Section 8.5). Comparing the outcomes of all operators, the higher-order shape functions
introduced by Bunge et al. [2022] yield the lowest error rates across all test meshes. This outcome
is not unexpected, given that the major benefits of quadratic shape functions are higher accuracy
and cubic convergence rate in exchange for larger and computationally more demanding systems.

8.2 Spherical Harmonics
The eigenfunctions of the Laplacian on the unit sphere S2 are called the spherical harmonics
𝑌𝑚
𝑙

: S2 → R with eigenvalues −𝑙 (𝑙 + 1). Using the fact that 𝑌𝑚
𝑙

are eigenfunctions, we can solve
for u ∈ R |V | :

u = M−1Ly𝑚
𝑙

(134)
⇔ Mu = Ly𝑚

𝑙
(135)
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Fig. 12. 𝐿2 error in log-log scale for the Poisson solve of the spherical harmonic function 𝑌 3
2 with eigenvalue

−12 on different tessellations of the unit sphere consisting of triangles (left), quads (center left), hexagons
(center right) and concave faces (right). All methods, except the Diamond Laplace, are equivalent to the
cotangent Laplacian on triangles. This leads to the overlapping lines for the leftmost plot.

and rescale the solutionwith the respective eigenvalue. The entries of y𝑚
𝑙
∈ R |V | denote the function

values of 𝑌𝑚
𝑙

sampled at the vertices. We can measure the error of u being an eigenfunction to the
presented Laplace operators by evaluatingy𝑚𝑙 + 1

𝑙 (𝑙 + 1) u
2

M
(136)

for a selected frequency with non-zero eigenvalue. The 𝐿2 norm is computed with respect to the
inner product induced by the mass matrix M.

Figure 12 displays the deviation of the solution from the analytic function values of

𝑌 3
2 (𝑥,𝑦, 𝑧) =

1
4

√︂
105
𝜋

(𝑥2 − 𝑦2)𝑧 (137)

with eigenvalue −12. The linear virtual refinement method yields some of the lowest error rates
especially for hexagons, while the harmonic shape functions yield very good results on the concave
tessellation, which are only surpassed by the Diamond Laplacian and the quadratic shape functions
[Bunge et al. 2022]. As for the operators presented by Alexa and Wardetzky and de Goes et al.,
choosing lower _ for the stabilization term leads to the most accurate results, with _ = 0.5 being
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Fig. 13. The smallest 48 non-zero eigenvalues of the Laplacian on different unit spheres with quads (left),
hexagons (center), and concave faces (right). The individual top plots shows the computed eigenvalues and
the lower ones the relative deviation from the ground truth.

Fig. 14. The smallest 34 non-zero eigenvalues of the Laplacian on two unit balls consisting of hexhedra (left)
and truncated cells (right). The individual top plots shows the computed eigenvalues and the lower ones the
relative deviation from the ground truth.

one of the most consistent options. The effect of chosen sample points on the harmonic shape
functions and their possible numerical artefacts can be observed in Figure 9. We analyzed different
kernel/collocation point samples for both the Franke as well as the spherical harmonics Poisson
solve and observed the expected behavior of lower kernel numbers influencing both error and
convergence rate.
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8.3 Eigenvalues and Eigenmodes
Given that the spherical harmonics have an analytic expression for their eigenvalues, we can solve
the generalized eigenvalue problem

Lu = _̃Mu (138)

for the eigenvalues _̃ of the discrete Laplacians and compare them to the analytic values. Figure 13
shows the first eigenvalues of each polygon Laplacian obtained on different spherical meshes. As
before, the operator constructed with the higher-order shape functions by Bunge et al. [2022]
yields the lowest error rates. A value of _ = 1 also leads to very accurate results for both Alexa
and Wardetzky’s and de Goes et al.’s operators. Using smaller values for the parameter leads to
larger eigenvalues, while higher _ yield results that are lower than the correct solution. The other
methods lead to relatively similar deviations with eigenvalues that display the expected “stair-like”
appearance, but are too large in the higher frequencies. The highest and lowest values for _ start to
loose the stair-like pattern for the eigenvalues.
Similarly, given the volumetric unit 3-ball B3, the eigenfunctions 𝑢 and eigenvalues _ of the

Laplacian can be obtained with the help of the Helmholtz equation:

Δ𝑢 = −_𝑢 in B3 (139)

s.t. 𝑢 = 0 on 𝜕B3. (140)

The discrete solution can be expressed by the spherical Bessel functions, which allows us to solve
the same generalized eigenvalue problem as in Equation (138) with the stiffness and mass matrix
obtained on a polyhedral tessellation of B3. Figure 14 shows the results for the eigenvalues on the
unit ball, where, after the higher-order discretization, the Diamond Laplacian has the most accurate
results. Here, all methods display the desired constant eigenvalues for the respective frequencies,
with only slight deviations.

8.4 Geodesics in Heat
In order to assess the quality of the divergence and gradient operators, we evaluate them in the
context of the geodesics in heat method presented by Crane et al. [2013]. Given the 𝑖-th unit vector
e𝑖 ∈ R |V | , we can obtain the geodesic distances from a vertex 𝑣𝑖 to all other vertices in the mesh in
three steps: First we solve the heat flow with a fixed small time-step 𝜖 for the vector u ∈ R |V | :

(I − 𝜖L)u = e𝑖
⇔ (M − 𝜖L)u = Me𝑖 .

(141)

Then we compute the normalized gradients of the solution vector through

g𝑗 =
(Gu) 𝑗(Gu) 𝑗 . (142)

In the last step, we solve the Poisson equation

Lv = Dg (143)

for the geodesic distances v ∈ R |V | and shift the solution by the offset of the value associated with
vertex 𝑣𝑖 to zero. Note that, depending on the employed Laplacian, the number and dimension of the
gradient vectors vary. For example, the methods introduced by Alexa and Wardetzky and de Goes
et al. [Alexa and Wardetzky 2011; de Goes et al. 2020] obtain three-dimensional gradient vectors per
polygon face, while Bunge et al. [2020] associate their gradient vectors with the virtual triangles, so
one per halfedge of the original mesh. On the other hand, the Diamond gradient operator [Bunge
et al. 2021] leads to intrinsic two-dimensional gradients that are associated with the virtual diamond
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Table 1. Different statistics involved in the solution process of a Poisson problem with the presented polygon
and polyhedral Laplacians.

Mesh |V| Harmonic [Alexa and Wardetzky 2011] [de Goes et al. 2020] Lin. Virt. Ref. Diamond

build nnz solve build nnz solve build nnz solve build nnz solve build nnz solve
Quads 2D 26k 92s 231k 8ms 44ms 231k 8ms 47ms 231k 8ms 10ms 231k 8ms 43ms 537k 21ms
Voronoi 2D 51k 78s 616k 25ms 94ms 616k 25ms 76ms 616k 25ms 29ms 616k 25ms 224ms 1723k 74ms
Hexahedra 3D 4913 465s 117k 3ms — — — — — — 190ms 117k 3ms 250ms 333k 6ms
Voronoi 3D 5183 482s 324k 5ms — — — — — — 140ms 324k 5ms 280ms 1497k 11ms

cells and therefore with the edges of the original mesh. Additionally, the normalization step in
Equation (142) differs depending on the chosen method. While all methods with a geometrically
motivated gradient can normalize the vectors by their respective Euclidean length, the method by
Alexa and Wardetzky [2011] needs an alternative approach. As pointed out by Crane et al. [2013],
interpreting the coboundary operator d as gradient leads to discrete 1-forms associated with the
halfedges, which cannot be directly normalized. However, since M1 (see Equation (33)) gives us an
inner product matrix for 1-forms, they propose to use

∥∇𝑢∥ 𝑓 =

√︄
uT
𝑓
L𝑓 u𝑓

|𝑓 | (144)

as normalization term by assuming that ∇𝑢 is constant over each face and therefore

uT
𝑓
L𝑓 u𝑓 =

∫
𝑓

∥∇𝑢∥2 d𝐴 = ∥∇𝑢∥2 |𝑓 | . (145)

The time step 𝜖 involved in the first step of the heat method (Equation (141)) is a debated subject.
As pointed out by Crane et al. [2013], the discrete setting does not follow the expected rule that
smaller time steps necessarily lead to more accurate results. However, too large time steps lead to
a smoothed approximation of the distances. We therefore compare the behavior of the two most
common choices:

• The squared mean edge length of the mesh, as proposed by Crane et al. [2013] and used in
Bunge et al. [2020].

• The squared length of the longest face diagonal, as suggested by de Goes et al. [2020; 2016].
Figure 15 and 16 show the deviation of the obtained geodesic distances to the Euclidean distance
in the plane and the great-circle distance on the unit sphere. Using the mean edge length as time
step leads to larger error fluctuations for the methods introduced by Alexa and Wardetzky and de
Goes et al., especially for progressively larger _, while the Laplacians by Bunge et al. [2021; 2020]
remain relatively unaffected. Using the maximum face diagonal stabilizes these deviations, but
negatively affects the accuracy for several of the presented methods on some of the test meshes. In
general, both the Diamond Laplace and de Goes et al.’s method for _ = 0.1 have the lowest error
rates, independent of the chosen time step. Additionally, the definition of a geometric gradient
operator greatly improves the accuracy of de Goes et al.’s method in comparison to the algebraic
coboundary operator used for Alexa and Wardetzky’s Laplacian. However, choosing larger values
for _ affects both methods negatively. Still, given that _ controls the influence of the stabilization
term for both methods, it can not be chosen to be indefinitely close to zero, since this would lead to
Laplacians with too large kernels and therefore spurious modes.
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Fig. 15. 𝐿2 error in log-log scale of the Geodesics in heat method on planar grids with quads (top), concave
polygons (center) and Voronoi faces (bottom). For each refined planar mesh the selected vertex was the one
with the least norm to the center of the plane.
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Fig. 16. 𝐿2 error in log-log scale of the Geodesics in heat method on unit spheres with quad (top), hexagon
(center) and concave faces (bottom).
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Table 2. Statistics for the solution of a Poisson problem using different polygon and polyhedral Laplacians.
The original values of this table were taken from [Bunge et al. 2022].

Mesh |V| Lin. Virt. Ref. Diamond Quad. Virt. Ref.

solve dof nnz solve dof nnz solve dof nnz
Voronoi 2D 200k 0.73s 200k 2.6M 4.3s 200k 7.6M 7.7s 507k 12.1M
Voronoi 2D 800k 9.8s 800k 10.4M 21s 800k 29.6M 36.7s 2M 48M
Bunny 3D 80k 1.6s 80k 2M 6.2s 80k 5.9M 26s 316k 17.6M
Kong 3D 160k 4.44s 167k 4.3M 25.9s 167k 12M 97.6s 662k 38M

8.5 Timings and Sparsity
In this section, we compare different statistics involved in the solution process of a Poisson problem
for both 2D and 3D meshes. Table 1 lists the respective timings to construct the stiffness matrix
(build), the number of its non-zero entries (nnz), and the time it takes to solve the system (solve)
with Eigen’s SimplicialLLT solver [Guennebaud et al. 2010] for the operators with linear degrees of
freedom. Table 2 excludes the construction of the stiffness matrix (build), but lists its respective
number of degrees of freedom (dof) which differs for higher-order shape functions. The solving
times were obtained by using supernodal Cholesky decomposition and back substitution [Chen et al.
2008]. The timings were measured on a standard workstation with a six-core Intel Xeon 3.6 GHz
CPU. As discussed in the locality property section, all Laplacians, with the exception of the Diamond
Laplace and the operator discretized with the quadratic virtual refinement method, have the same
sparsity pattern for their matrices, leading to roughly the same solving times. However, while the
implementation of the respective methods has not been extensively optimized for efficiency, it is
very apparent that the construction time of the harmonic shape functions by Martin et al. [2008]
exceeds the other operators by a tremendous amount. Especially for volume meshes, the time it
takes to build the involved matrices makes the method not competitive, since its accuracy is on par
with the linear virtual refinement method by Bunge et al. [2020] and does not justify the large costs.
Table 2 provides another comparison of statistics concerning the solution of a Poisson problem,
now incorporating the quadratic shape functions introduced by Bunge et al. [2022]. As mentioned
before, the time it takes to solve the system using a direct solver depends on the degrees of freedom
(which manifest as number of rows and columns) and the number of non-zeros (nnz). The definition
of quadratic basis functions introduces additional nodes, which leads to larger and denser matrices.
The previously observed faster convergence and higher accuracy of Bunge et al.’s method therefore
come at the cost of a numerically more demanding solve process compared to methods that only
use vertex nodes. Since the timings in Table 2 were obtained with a Cholesky solver, discrete
Laplacians with the same non-zero structure lead to identical solving times and can be treated
equally in this setting. The Diamond Laplace of Bunge et al. [2021] introduces coefficients that
establish connections between vertex nodes of neighboring elements, resulting in denser matrices
and therefore justifying a separate column.
As expected, the solving times of the quadratic method are higher for all examples due to the

larger number of degrees of freedom and denser matrices. However, using a multigrid construction
presented in the original paper [Bunge et al. 2022] can lower the computational costs and is a
common approach when using higher-order shape functions.
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Fig. 17. 𝐿2 error in log-log scale for the Poisson solve of the spherical harmonic function 𝑌 3
2 with eigenvalue

−12 on planar and non-planar hexagons. The non-planar elements affect both the convergence rate and
accuracy of all methods. The harmonic shape functions are not included in this experiment, since their
definition only holds for planar polygons.

8.6 Mesh quality
An interesting sub-case of polygonal meshes are those with non-planar faces. They are in general
more challenging than planar elements due to their twisted surfaces, but still occur frequently in
both surface and volume computer graphics models. So far, we have only considered meshes with
planar polygons in order to establish an intuition of the general effectiveness of each operator.
However, in order to evaluate this more challenging setting of non-planar faces, we still have to
retain a mesh with a known analytic solution to the given problem. We therefore added noise
in tangential direction to the vertex positions of the previously mentioned hexagon spheres and
projected them back onto the unit sphere. While this results in non-planar faces, note that the added
noise also leads to less balanced hexagonal shapes. Equipped with these new test meshes, we repeat
the spherical harmonics convergence test (see Figure 17). In general, each of the evaluated operators
displays a higher error rate and slower convergence for the non-planar sphere, with the Laplacians
presented by Bunge et al. [2021; 2020; 2022] being the least affected. In contrast to the planar case,
choosing a lower hyperparameter _ for the operators of Alexa and Wardetzky [2011] and de Goes
et al. [2020] leads to better results. Similar tendencies can be observed if we add progressively
stronger noise to the faces of a single mesh, as depicted in Figure 18. All operators display higher
errors for increasingly twisted faces, but in this setting, choosing the same hyperparameter _ = 0.5
as in the planar case leads to the lowest rates for the works presented by Alexa and Wardetzky and
de Goes et al.. However, with increasing non-planarity the error converges to similar values as for
_ = 0.1, which appears to be more stable. As in the other test, the operators presented by Bunge et
al. lead to the lowest errors. The harmonic shape functions presented by Martin et al. [2008] were
not included in these evaluations, since their definition only holds for planar polygons.
Another aspect in which the underlying tessellation may directly affect the quality of the operators
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Fig. 18. 𝐿2 error in log-log scale for the Poisson solve of the spherical harmonic function 𝑌 3
2 on progressively

non-planar hexagons. We added different magnitudes of tangential noise to the initial faces and projected
the vertices back onto the unit sphere. In order to measure the “non-planarity” of the polygons, the x-axis
depicts the mean distance of the face vertices to a fitted plane.

is the shape of the faces itself. For example, Delaunay triangles lead to more favorable results and
properties for the Laplacian than meshes consisting of less ideal triangulations [Herholz et al. 2015].
A possible way to quantify the stability of the operator with respect to the given tessellation is to
analyze its condition number ^. It is defined as the ratio

^ =
_𝑚𝑎𝑥

_𝑚𝑖𝑛

(146)

of the Laplacians largest and smallest non-zero eigenvalues _𝑚𝑎𝑥 and _𝑚𝑖𝑛 . Note that the actual
smallest eigenvalue would be zero, since the Laplacian has a one-dimensional kernel. The condition
number gives us a notion about the numerical quality of the stiffness and mass matrices and the
operators potential to quickly converge to the correct solution of a given problem [Krishnan et al.
2013]. We therefore evaluate the effect of decreasing polygon quality on the different Laplacians by
incrementally collapsing a single edge of the previously considered quad plane, while measuring its
effect on the respective condition numbers. The results can be seen in Figure 19. In general, all of
the presented operators are not really affected by the first iterations of edge distortion. However, as
the edge length approaches zero, the condition numbers of the Laplacians introduced by Bunge et
al. [2021; 2020; 2022] begin to rise significantly due to the diminishing triangle quality of the virtual
refinements. This trend is particularly pronounced in the context of the quadratic virtual refinement
method, where the additional degrees of freedom and refined quadratic Lagrange elements result
in considerably higher condition numbers. The numerical stability of the operators presented by
Martin et al. [2008] and de Goes et al. [2020] also decreases, but with a lower magnitude. In contrast,
the Laplacian presented by Alexa and Wardetzky [2011] is not affected by the diminishing edge
length and only slightly increases for the smallest hyperparameter _ = 0.1. However, both operators
presented by Alexa and Wardetzky and de Goes et al. follow the pattern that a higher _ leads to
generally larger condition numbers.
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Fig. 19. Condition numbers (Equation (146)) of the different Laplace operators on an initially uniform quad
plane. One edge within the grid is progressively shortened, resulting in four faces to become more and more
distorted with each iteration. The diminishing quality of the polygons lead to higher condition numbers for
most of the operators.

9 SUMMARY AND RECOMMENDATION
In light of the above, we want to summarize the presented results and give the reader a recommen-
dation in which situation which operator should be used.
In the linear setting, given their overall performance, the Laplacians presented by Alexa and

Wardetzky and de Goes et al. lead to very favorable numerical results if the user is willing to adjust
the stabilization parameter _. Furthermore, de Goes et al. provide a list of other operators that go
hand in hand with the matrices introduced in this paper and lead to a larger variety of problems
that can be handled with their method.

If the reader is looking for a method that works both on surface and volume meshes and leads to
accurate results without any adjusting, the Diamond Laplacian would be their method of choice.
However, given its denser matrix pattern, this approach leads to longer solving times.
If this is a problem, a computationally more efficient but slightly less accurate choice would be

the operator presented by Bunge et al. [2020]. It works on both surface and volume meshes and,
given that many applications already work with the cotangent Laplacian, can be easily integrated
since the only missing piece is the prolongation matrix.

Should the reader’s primary goals revolve around achieving high accuracy and faster convergence,
with limited regard for the computational complexities and potential numerical stability of the
underlying system to be solved, then forsaking the linear setting entirely in favor of employing
higher-order shape functions as defined by Bunge et al. [2022] would be the best choice.
The harmonic shape functions are not competitive in comparison to the other methods due to

their costly construction process. However, they are able to reproduce P1 and Q1 elements on
triangles and quads, are 𝐶0 continuous to P1/Q1 at the boundaries of polygons and polyhedra, and
can therefore be seamlessly mixed with these standard elements.
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10 CONCLUSION AND OUTLOOK
Throughout this course, we attempted to give a comprehensive description of the recent progress
achieved within the graphics community to construct general polygonal and polyhedral Laplace
operators. By highlighting the numerical schemes used for the respective Laplacians, we provide
context for the individual discretization strategies and motivate the problems involved in their
generalization process. Furthermore, we analyzed the properties of most Laplacians and investigated
similarities and parallels between the presented methods. As a second aspect of this course, we
introduced a variety of discrete gradient and divergence operators and explain the relationship
to their associated Laplacian. Finally, we provide a list of quantitative comparisons between the
presented operators that highlight their individual strengths and weaknesses, while simultaneously
addressing reoccurring debates within the original papers. The source code for these tests and the
construction of the individual operators are publicly available.
We hope that this course helps to motivate the usage of more general tessellations within the

graphics community, given that the necessary tools for many applications are already there. Fur-
thermore, besides the Laplacian, there exist a variety of other discrete differential operators that
could be useful to the graphics community, as touched upon by de Goes et al. [2020] and [Lipnikov
et al. 2014] in their survey on the MFD method.
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