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Abstract
Efficientsurfacereconstructionandreverseengineeringtechniquesare usuallybasedon a polygonalmeshrep-
resentationof the geometry:the resultingmodelsemerge from piecewiselinear interpolationof a setof sample
points.Thequalityof thereconstructionnotonlydependsonthenumberanddensityof thesamplepointsbut also
on their alignmentto sharpandroundedfeaturesof theoriginal geometry. Badalignmentcanleadto severe alias
artifacts. In this paperwepresenta samplingpatternfor feature andblendregionswhich minimizesthesealias
errors.We showhowto improvethequality of a givenpolygonalmeshmodelby resamplingits feature andblend
regionswithin an interactiveframework. We further demonstrate sophisticatedmodelingoperationsthat can be
implementedbasedon this resamplingtechnique.

1. Introduction

Surfacereconstructionusuallyrefersto theprocessof deriv-
ing manifoldsurfaceinformationfrom measuredpointdata.
The input datatypically comesas a dense(in generalun-
structured)cloudof samplepointsin 3–spaceandtheoutput
is themathematicaldescriptionof asurfacethatinterpolates
or approximatesall or someof thesamples.

The classicalscattered data interpolationtechniquesare
mostlybasedonfitting splinesurfaces11 or surfacesspanned
by radialbasisfunctions15 to thediscretedata.Thevariety
of shapesthatcanbereconstructedwith thesetechniquesis
limited sinceaglobalparameterizationof thedataoversome
parameterdomainΩ �

IR2 is required.

With the wider availability and improving performance
of 3D scanningtechnology, the complexity of geometric
datasetshasincreasedsignificantly. Datasetswith several
million samplepoints are routinely generatedfrom scan-
ning highly complex shapes.Sinceclassicalapproximation
techniquescanno longerbe appliedwithout involved pre–
processing(e.g. segmentation21� 22), many surface recon-
struction schemesbasedon polygonal mesheshave been
proposedover thelastyears.

Therearedifferenttechniquesto generateinterpolatingor
approximatingtrianglemeshesfor a given cloudof sample
points. One approachis to connectthe given samplesdi-

rectly by estimatingthe neighborhoodrelationbetweenthe
pointsfrom their spatialconstellation7� 1. Someof theseal-
gorithmscombinetheneighbor–findingwith a subsampling
mechanismto control thecomplexity of the resultingmesh
2. Otherapproachesderiveavolumetricsigneddistancefield
for the spacearoundthe cloud of samplesandgeneratean
approximatingtriangle meshby extracting the zero–level
iso–surfacefrom thatvolumetricscalarfield 9� 5� 23.

All the above techniquesleadto highly detailedtriangle
meshes.Although most algorithmsallow the user to con-
trol theoutputcomplexity by globally adjustingtheresolu-
tion, it is often necessaryto setthe resolutionhigh enough
to avoid topologicalambiguities.An additionaldrawbackis
dueto thefactthattheresolutioncanonly bechangedglob-
ally and hencewe either lose relevant geometricdetail (if
we setthe resolutiontoo low) or we extremelyoversample
flat surfaceregions (if we set the resolutionto high). Lo-
cally adaptingthe resolutionis difficult sincethis requires
to detectthepresenceof fine detail ( � estimatethesurface
curvature)before thesurfaceis actuallygenerated.In coarse-
to-fineapproacheslike 23 themeshresolutionis adaptedby
selective refinementbasedonana posterioriestimator.

Thestandardprocedureto avoid thesedifficultiesis there-
fore to first reconstructhighly complex meshesandthenap-
ply somemeshdecimationtechnique10� 18� 13 which effec-
tively reducesthenumberof triangleswhile keepinga pre-
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scribedapproximationtoleranceandoptimizing the visual
quality. Out–of–coredecimationalgorithmsareableto pro-
cessdatasetsof virtually any size16� 4. As aresultweobtain
a trianglemeshthatapproximatestheoriginal geometryup
to a prescribedtolerancewith a minimum numberof trian-
gles.

Since most geometry-baseddecimation schemesare
greedyalgorithmsthatonly considerthe local shapeto de-
cideaboutwhich vertex to remove in thenext step,oneusu-
ally hasno direct influenceon the distribution and global
alignmentof themeshverticesonthesurface.Theonlyguar-
anteeis that the vertex distribution correlateswith the sur-
facecurvature,i.e. we obtaina low vertex density(largetri-
angles)in flat regions anda high density(small triangles)
in curved regions.For the betterdecimationalgorithmswe
canfurtherobserve thatin cylindrical regionswith highcur-
vaturein oneandlow curvaturein theorthogonaldirection,
thevertex distribution is anisotropic,leadingto longthin tri-
anglesalongthe cylinder axisdirection(cf. Fig. 1). This is
anaddedvalueto thosedecimationschemessincesuchtri-
angulationsapproximatecylindrical regionsmuchbetterfor
a fixedtrianglebudget.

While such decimatedmeshesare well–suited for dis-
playing, they turn out to be inappropriatefor moresophis-
ticateddownstreamapplicationslike numericalsimulation
(e.g.CFD).Thereasonfor this is thatthe(weighted)random
distribution of vertices( � surfacesamples)leadsto severe
aliaserrorswhichbecomevisibleasflat shadingartifacts(cf.
Fig. 1) andwhich canleadto erroneoussimulationresults.
Thosealiaserrorsarecausedby the fact that althoughthe
decimatedtriangle meshstayspointwisewithin sometol-
eranceto the original data,the normalvectorscandeviate
significantly.

This socallednormalnoisebecomesparticularlyevident
in thevicinity of featurelinesontheoriginalshape.Herethe
two principalcurvaturesdiffer verystrongly– in theextreme
caseof sharpfeatures,thecurvatureacrossthe featureeven
diverges.

Theonly wayto solvethisgeometricaliasproblemin sur-
facereconstructionis to choosethe“right” samplingpattern,
i.e. to globallyadjustthedistributionandalignmentof mesh
verticessuchthatthenormalvectorsof thetrianglesapprox-
imatethenormalvectorsof theoriginal surface.

In thispaperweproposeasolutionto thissamplingprob-
lem. We presenta techniqueto resamplethe feature re-
gionsof a given trianglemeshsuchthat the aliasartifacts
arestronglyreduced.We advocatefor anintegrationof this
techniqueinto a semi–automaticset–upsincewe consider
the problemof detectingfeatureregionsto be independent
from theactual(re–)samplingproblem:If we would have a
reliable techniquefor featuredetection,we could combine
it with our resamplingtechniqueto implementa fully auto-
matic resamplingscheme.For industrialsurfacedesignap-
plications,manualfeaturedetectionis acceptableandeven
preferredby mostdesigners.

Figure 1: Geometricalias effectssuch asnormalnoisebe-
comeclearly visibleunderspecularshading. Thetop image
showsan original 3D–scanof a feature region. Although
thepointpositionshavebeensampledat highprecision,the
normalsof theresultingmeshdeviatestronglyfromthenor-
malsof theoriginal surface. Applyingmeshdecimation(cen-
ter) improvesthe situation slightly sincethe triangles are
stretchedalong the feature but thenormalnoiseis still dis-
turbing. In thebottomimage weappliedour alias–reducing
feature resampling. Although the meshresolutionhas not
changed, the quality has improveddue to effectivenormal
noiseelimination.

Themaincontribution of this paperis thedefinition, jus-
tification,andapplicationof a samplingpatternfor geomet-
ric featureregionswhichprovably satisfiesthemeshquality
requirementsfor numericalsimulationapplications.Wefur-
therpresentanefficient andeffective techniqueto reverse–
engineerthesesamplingpatternswith only little user in-
put for the featuresof a given geometricmodel.We finally
demonstratethat the additionalstructureof the resampled
meshmodelsprovidesthe basisfor a numberof high level
modelingoperations.

2. Feature regions

In theboundaryrepresentationof geometric(solid) models
we candistinguishthreetypesof surfaceregions:thereare
geometricprimitives (parts of spheres,cylinders, or tori),
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freeformsurfaces(smoothsurfacepatchesof generalshape),
andblends. Blendsareusuallyconstructedto join theother
surfacepartsin orderto obtainaconsistentrepresentationof
a closedsolid.

A blendsurfacecanbe thoughtof aseithergeneratedby
rolling a ball with varying or constantradiusover the gap
betweentwo surfacesegmentsor bysweepingaprofilecurve
alongthetwo oppositeboundaries(cf. Fig.2). In theextreme
case,a blendcandegenerateto a featurecurve wheretwo
surfacesegmentsmeetwith discontinuoustangentplanes.
Wecall suchfeaturecurvessharpfeatures. They correspond
to rolling ball blendswith zeroradiusof theball.

Figure 2: Feature regions on a complex surfaceusually
emerge from blendingtwo separate patchesalong the cor-
respondingboundary. Thetwopatchesonthetop left canbe
joinedbycomputingtheir intersection.Thisleadsto a sharp
feature line (top right). Alternativelywe can roll a ball of
prescribedradius(bottomleft) or sweepa morecomplicated
profile (bottomright).

Whensamplinga surface,we have to adaptthesampling
densityto the local curvaturedistribution in order to cap-
tureall (andonly) relevant geometricdetails.Obviously, in
highly curvedregionswheretheprincipalcurvaturesκ1 and
κ2 arebothlarge,wehaveto samplemoredenselythanin re-
gionswherebothprincipalcurvaturesaresmall.If themag-
nitude of the curvaturesdoesnot differ too much then an
isotropicsamplingpatternis fine. However, sincetwo prin-
cipal curvaturescharacterizethelocal curvature,anoptimal
samplingpatternhasdifferentdensitiesin thecorresponding
principal directions.Hence,in feature regions– character-
ized by κ1 � κ2 – we have to usean anisotropicsampling
patternand this patternshouldbe alignedto the principal
directions.

In terms of the above classification into primitives,

freeformpatches, and blends the featureregions are usu-
ally theblendareaswhere,e.g.,asphereof radius1� κ2 rolls
alonga curve with curvatureκ � κ1 � κ2.

3. Surface sampling

In theintroduction,wepointedoutthattheweightedrandom
distributionof surfacesamplesasit emergesfrom meshdec-
imationdoesnot yield satisfactoryresultsin featureregions
dueto normalnoise. We now give a moreprecisedefinition
of normalnoiseandthenpresenta simplesamplingpattern
for featureregionsthatreducesnormalnoiseto a minimum.

The roughnessof a triangle meshcan be measuredby
somediscreteanalogonto the conceptof curvature6� 20� 17.
A simplediscretizationis, e.g.,to ratethecurvature( � non–
planarity)acrossanedgeof themeshby theanglebetween
thenormalvectorsof theadjacenttriangles.We call thisan-
gle the normal jump. If the triangle meshis an orientable
manifoldthenwecandistinguishconvex normaljumps(pos-
itive sign) and concavenormal jumps (negative sign). By
adding the normal jumps with respectto its three direct
neighbors,we obtain a single curvaturevalue per triangle
whichcanbeinterpretedasdiscretemeancurvature.

High quality (“class A”) surfacesin GeometricModel-
ing andCAD areusuallycharacterizedby low variationof
curvature.Most surfacefairing techniquesimprove a given
shapeby reducingthesurface’s curvatureor its variationin
an optimizationprocess19� 6� 12. Transferringthis notion of
fairnessto trianglemeshesimpliesthatwe considermeshes
to beof high quality if thevariationof thenormaljumpsis
low.

For a low quality meshwith strongly varying normal
jumpsthe individual trianglenormalsaremoreor lessran-
domly tilted away from the normal conecorrespondingto
the underlyingsurface patch(cf. Fig. 1). We call this ef-
fect which becomesclearly visible underspecularshading
of the surfacenormal noise, becauseit behaves very sim-
ilar to surfacenoisewhich refersto a high frequency per-
turbationof the vertex positionsaway from the underlying
surface.The processof reducingor even removing normal
noiseby choosinganappropriatesamplingpatternis called
surfaceanti–aliasing.

It is easyto seethat randomsamplinggenerallyleadsto
significantnormalnoise.Consider, e.g.,thesimpleexample
of anorthogonalcylinder. Placingthesamplesrandomlyon
thesurfacecausesanuncontrollabletilt of the trianglenor-
malsaway from the original surfacenormalswhich areall
orthogonalto thecylinder’s axis.

If we reducethesamplingdensityin thedirectionof the
cylinderaxisweobviouslyreducethenormalnoisesincethe
resultinglongandthin trianglesbecomemoreandmorepar-
allel to thecylinderaxisandhencetheirnormalsbecomeap-
proximatelyorthogonalto theaxis.However in generalthe
normalnoisewill never disappearcompletelyand, in fact,
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wetradethetriangle’saspectratio(anothermeshqualitycri-
terion)for thereducednormalnoise.

The genericconfigurationof a triangle’s normal vector
beingorthogonalto thecylinder axisoccursif thetriangle’s
embeddingplaneintersectsthecylinder in two parallellines.
Sincethetriangleis spannedby threesurfacesamples,these
samplesalsohave to lie onthosetwo lines.This impliesthat
a triangle is free of normal noiseif and only if one of its
edgesis parallelto thecylinderaxis.

Now considerasamplingpatternwhereall sampleslie on
a setof lineswhich areparallelto thecylinder axisanddis-
tributedequallyaroundthecylinder. Eachstripbetweentwo
of thoselinescanbetesselatedby a planartriangulation.As
aconsequencethenormaljumpsbetweentrianglesareeither
zero(within thesamestrip)or aconstantanglethatonly de-
pendson the numberof strips.Hencethe normal noiseis
minimal. The two differentnormaljump valuescorrespond
to thetwo principalcurvatureson thecylindersurface.

We now generalizethis ideato derive a samplingpattern
for surfacesthatarepartof anenvelopegeneratedby moving
asphereof constantradiusalongaspacecurve. In Section5
we will apply thesamesamplingpatternto evenmoregen-
eral profile sweepsurfacesto empirically demonstratethat
we still obtainsuperiorquality meshescomparedto random
samplingalthoughwe canno longerguaranteezeronormal
noisein this generalizedsetting.

The envelopeof a moving spherecan be definedalter-
natively by a centercurveg � t � alongwhich a planarcircle
profile is moved.The orientationof the circle’s embedding
planeat a time stept0 is definedby thetangentg 	
� t0 � of the
centercurve. The sweepsurface itself is the collection of
all profilesat differenttime stepst �
� a � b� . We assumethat
theminimumcurvatureradiusof thecentercurve g is larger
thantheradiusof thecircleprofile to avoid thediscussionof
surfacedegeneracies.

Accordingto theabove definitionwe candistinguishtwo
naturaldirectionson sucha sweepsurfaceS: onealong the
centerline andonearoundthecenterline. Wecanusethese
directionsfor a naturalparameterizationS� t � u� with t vary-
ing alongandu aroundthecentercurve. In this parameteri-
zation,theiso–curveswith constantparametert0 arecircles
aroundthecenterg � t0 � . Iso–curveswith constantparameter
u0 are the trajectoriesalongwhich a specificpoint on the
circle profile moves.Obviously, the trajectoriesareoffset–
curvesto the centercurve andconsequentlythe iso–curves
with respectto the parametert and u intersectperpendic-
ularly. In fact, it can be shown that the iso–curves are the
principalcurvaturelinesof thesweepsurface3. Anotherim-
portantpropertyof the trajectorieswhich will beusedlater
on, is that they have constantEuclideandistanceaswell as
constantgeodesicdistance.

The samplingpatternfor the sweepsurfacehasto dis-
cretize the parameterdomain in t and u direction. We
start by discretizingthe moving profile itself. This means

we approximatethe circle S� 0 � u� by a closed polygon
P ��� p0 ��������� pn � 1 � with pi � S� 0 � i � n� . Whensweepingthis
closedpolygoninsteadof thecircle,weobtainasurfacethat
consistsof n ruledsurfaces

Ri � t � u����� 1 � u� S� t � i
n
��� u S� t � i � 1

n
���

Becausethetrajectoriesalongwhich thepointspi move are
perpendicularto theprofiles,we immediatelyseethat if we
choosethepolygonP to bea regularn–gonthenthenormal
jump betweenneighboringruledpatchesRi is exactly 2π � n
everywhere(cf. Fig. 3). Hencewe have a constantnormal
jump( � zerovariation).

Figure 3: By discretizingthesweepprofile weapproximate
the original envelopesurfaceS by a collection of n ruled
surfacesRi . Sincewe replacethe circle profile by a regu-
lar n–gonwhich movesorthogonallyto its embeddingplane,
all normal jumpsbetweenneighboringstripsare constantly
equalto 2π � n.

Next we have to find a triangulationfor eachruledpatch
Ri whichcorrespondsto adiscretizationin t direction.Since
thetrajectoriesarelinesof minimalcurvature,wedonotex-
pectlargenormaljumpsbetweentriangleswithin thesame
strip.However, we have to make surethat theconstantnor-
mal jump propertyof then–gonsweepis preservedasgood
aspossible.

If weapproximatethesegmentg ��� t0 � t1 ��� by astraightline
or acirculararcthentheresultingpatchRi ��� t0 � t1 ����� 0 � 1��� is a
cylindric or conicsurfacepatch.Noticethat theapproxima-
tion error of a circular arc to the curve segmentg ��� t0 � t1 ���
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decreaseslike O ��� t1 � t0 � 3 � . Hence,even for generalcen-
ter curvesg we canlocally approximateeachsurfacepatch
Ri ��� t0 � t1 ����� 0 � 1��� by acylindric or conicsurfacepatch.More-
overRi is linearin u directionandthetwo iso–curvesRi � t � 0�
andRi � t � 1� areoffsetsof eachother.

For a conic patch Ri ��� t0 � t1 ����� 0 � 1��� , any two gener-
ator lines (e.g. Ri ��� t0 ����� 0 � 1��� and Ri ��� t1 ����� 0 � 1��� ) inter-
sect in a common point, the apex. Hence the quadri-
lateral � Ri � t0 � 0� � Ri � t0 � 1��� Ri � t1 � 0��� Ri � t1 � 1��� is planar. If
Ri ��� t0 � t1 ����� 0 � 1��� slightly deviates from a conic patch, the
correspondingquadrilateralwill still be very flat. Conse-
quently, the quadrilateralspannedby Ri � t0 � 0� , Ri � t0 � 1� ,
Ri � t1 � 0� , and Ri � t1 � 1� will be very close to planar and
no matter how we split it into two triangles,we do not
introducea significant normal jump betweenthe two re-
sulting triangles. In addition, if we look at neighbor-
ing quadrilaterals� Ri � t0 � 0� � Ri � t0 � 1��� Ri � t1 � 0��� Ri � t1 � 1��� and
� Ri ! 1 � t0 � 0��� Ri ! 1 � t0 � 1��� Ri ! 1 � t1 � 0��� Ri ! 1 � t1 � 1��� , the normal
jump betweenthemis approximately2π � n sinceeachquad
is spannedby a pair of generatinglines from theneighbor-
ing stripsRi andRi ! 1 for thesameparametervaluet0 andt1
respectively.

Hence,it turnsout that the regular triangulationfor each
strip which usesthe samplepairsRi � t j � 0� andRi � t j � 1� for
any sequenceof parametervaluest j doesnot introducesig-
nificantnormalnoise.Moreover, we canevenshow thatany
modificationof the triangulationonly increasesthe normal
noise.

Consider, e.g., the four samplesA � S� t0 � i � n� , B �
S� t1 � i � n� , C � S� t2 � � i � 1��� n� , and D � S� t3 � � i � 1��� n�
which definetwo trianglesT1 �"� A � B � C� andT2 �#� D � B � A�
in neighboring strips. If the trajectories S� t � � i � 1��� n� ,
S� t � i � n� , and S� t � � i � 1��� n� are no straight lines then the
normalanglebetweenT1 andT2 candiffer significantlyfrom
theoptimalvalue2π � n whenwe choosetheparameterval-
uest2 andt3 from theinterior of the interval � t0 � t1 � (cf. Fig.
4). This local deviation of the normal jump from the aver-
age2π � n propagatesacrossthe meshbecausethe sum of
the normaljumpsalonga planarcontouraroundthe center
line is constantlyequalto 2π.

In conclusionof this sectionwe find that the key to an
anti–aliasedsamplingpatternon sphericalsweepsis to ar-
rangethe surfacesamplespi $ j � S� ti � u j � suchthat the the
points � pi $ j � i lie ona commoncircle aroundthecentercurve
andthesamples� pi $ j � j lie on trajectories.

4. Interactive surface reconstruction

In thelastsectionweshowedthatarolling–ballblendshould
betriangulatedbasedonasamplingpatternthatis alignedto
theprincipalcurvaturedirections(trajectoriesandcirclepro-
files) in orderto minimizenormalnoise.However, sampling
anexistingfeaturewith unknown centercurveg from agiven
trianglemeshis a differentsituation:unlesswe aredealing
with a sharpfeature(i.e. its radiusequalszero) the center

Figure 4: In bothimages,thefeatureregion is reconstructed
by placing the samplesalong the trajectories.Onethe left,
thesamplesare “synchronized” in theorthogonaldirection
(i.e. along the contours) as well, leading a noisefree ap-
pearance. Onetheright, weshiftedthephaseoneveryother
trajectorythusprovokingextremenormalnoise. Noticethat
thegeometricapproximationerror is thesamein bothexam-
ples.

curve doesnot lie on thegivensurface,neitherdo we know
the radiusof the profile that was sweptalong it. Instead,
thesurfacedataonly providesus theresultingblend.In or-
der to reverse–engineerthe featureandto resampleit in an
anti–aliasedmannerwe have to generatethe samplingpat-
ternwithoutexplicitly knowing theprincipaldirectionbased
parameterizationS� t � u� .

Ourgoalis to generatethesamplinggrid usingafishbone–
typeof grid structure:wefirst constructabackbonecurveT0
that is approximatelyalignedalong thefeatureandthenwe
tracerib curvesCi that branchoff perpendicularlyfrom it
(andhencearealignedaround the feature).In termsof the
lastsection,thebackbonecorrespondsto a trajectoryon the
sweepingprofile,while theribsrepresentthecontoursatdif-
ferenttime steps.On eachrib Ci we take a setof uniformly
spacedsamplespi $ j (with respectto arc–lengthparameter-
ization). If we connectthe j th samplefrom every rib, we
obtaina curve Tj with constantgeodesicdistancefrom the
backbone.This impliesthatthecurveTj is anothertrajectory
andit follows thatthesetof samples� pi $ j � i $ j hastheproper-
tiesderivedin theprevioussection.

Consequently, the resampledtriangle meshpatch is an
anti–aliasedapproximationof thefeatureregion thatwecan
insertinto a targetmeshby usinga mesh–stitchingmethod
similar to theonedescribedin 14. This targetmeshdoesnot
needto be the samemeshasthe onewe sampledfrom. In
the context of surfacereconstructionfrom rangedata,e.g.,
we may generatethe target modelusingstandardmethods
5� 2. This meshcould afterwardsbe enhancedby stitching
in alias–reducedpatchesthatwereresampledfrom thebest
available geometry, i.e. from the original non–decimated
rangescans.
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Figure 5: Thissequenceof imagesgivesa roughoverview of our resamplingprocedure. Thebackboneis generatedby interpo-
lating userselectedsurfacepointsanda setof ribs is createdbyintersectingthesurfacewith a setof planesbeingorthogonalto
thebackbone(left). Featuresnappingallowsto re–positionthebackboneexactlyona sharpfeature line (centerleft).Additional
trajectoriescanbedefinedby marching fromrib to rib according to someselectioncriterion (center).By uniformlysampling
the rib curves,we can generate a regular triangulation of the feature region. Thealignmentof the samplinggrid to the ribs
in onedirectionandto thetrajectoriesin theorthogonaldirectionguaranteesan anti–aliasedreconstruction(center, right). If
necessary, theresampledmeshcanbesmoothedby applyingunivariatefilters that preservethefeature characteristics.Finally
theresampledmeshis stitchedinto theoriginal (right).

In the following we explain thebasicstepsof theresam-
pling procedurein moredetail:

The initial backboneis constructedinteractively: the de-
signersketchesthefeatureby picking a few positionson an
estimatedtrajectory. The backbonecurve is thengenerated
automaticallyby smoothly interpolatingor approximating
thesepoints.Sincewe do not require the backbonecurve
to lie exactly on thesurface,this procedureallows usto ob-
tainasmoothbackbonecurve evenif theunderlyingsurface
datais noisy. The only (soft) requirementfor the resulting
backbonecurve is that it shouldbeanapproximateoffsetof
a trajectory.

To genereratetherib curves,thebackboneis sampledei-
ther uniformly or with a curvature–dependentstepwidth.
For eachof the samplepoints vi we createa rib curve by
intersectingthegivensurfacewith theplanepositionedat vi
andorthogonalto the backbone’s tangent(cf. Fig. 5, left).
This specialrib generationis the reasonwhy the backbone
doesnot have to lie exactly on the surface.Nevertheless,
eachrib is a planar polygon (a fact we will exploit later
on) thatexactly lies on thesurface.If thegivensurfaceis a
polygonalmesh,theplaneintersectioncanbe implemented
by alocal tracingschemesuchthatthecomputationcostsdo
notdependon theoverall complexity of themesh.

To createa new trajectorythe userselectsoneor more
interpolationpoints on different ribs. Startingfrom sucha
point, the new trajectory is constructedby marchingfrom
rib to rib. Thecorrespondingpointson theneighboringribs
canbeidentifiedaccordingto severaldifferentcriteria:
% We can choosethat point which hasthe samegeodesic

distanceto an alreadyexisting trajectory(to mimic the
offsetcurve propertyof trajectories).% We canproceedin orthogonaldirectionto thecurrentrib
(to mimic theprincipaldirectionpropertyof trajectories).

Figure 6: At stronglycurvedfeatures,theribs mayintersect
each other. If wegiveup therequirementthat the ribs have
to beorthogonalto thetrajectories,wecanstill finda decent
triangulationwith reducednormalnoise.

% We can choosethe local curvaturemaximumto tracea
sharpfeatureline.This is aconvenientmethodto snapthe
backboneto a featureline if the initial backbonedid not
fit (cf. Fig 5, centerleft). Noticethatthesnappingonly re-
quiresunivariatefeaturedetectionwithin eachrib curve.% We can simply interpolatea given set of points by a
smoothcurve. This provides full manualcontrol to the
designer.
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In casewe usethebackbonesnappingwe might have to
recomputetheribsby intersectingthesurfacewith anew set
of planesbeingorthogonalto thenew backbone(cf. Fig. 5,
centerleft). We found this techniqueparticularlyuseful in
practicesinceit allows the designerto selectsharpfeature
lineson a CAD modelwith a high precisionwithout having
to pick pointsexactlyon thefeatureby himself.

When the feature is strongly curved we may run into
theproblemof overlappingrib curves.To generateananti–
aliasedtriangulationin this case,we have to give up there-
quirementthatribshaveto beorthogonalto trajectories.The
following techniqueyields very satisfactory results:For a
given fishbone( � backbonesamplesvi plus ribs) we gen-
eratetwo additionaltrajectories� wi � and � w 	i � with constant
distancealongtheribs. In thepresenceof overlappingribs,
thesetrajectorieswill have kinks andloops.By applyinga
simple low–passfilter operatorto the outer trajectorieswe
canstraightenout thesedegeneracies.

After the filtering, the threepointsvi , wi , andw 	i which
areassociatedwith the ith rib, definea tilted plane.By inter-
sectingthe given surfacewith thesenew planes,we obtain
new ribs whichno longeroverlap(cf. Fig. 6).

The last stepof the resamplingprocedureis to compute
equidistantsampleson eachrib with respectto the arc–
length parameterization.Thosesampleshave the property
that they are(trivially) alignedto the ribs ( � contours)but
alsoalignedto thetrajectoriessincethe j th sampleon each
ribs hasthe samegeodesicdistanceto any othertrajectory.
Hence the samplinggrid matchesthe requirementsfrom
Section3 andthereforewe canexpectan anti–aliasedsur-
facereconstruction.Theresamplingprocedureis concluded
by stitchingthenew patchinto theoriginalmesh.

Figure 7: Roundinga sharpfeature: Thefeature region has
beenresampledby our new technique. The image on the
left showsfour trajectoriesand several ribs. Thearea be-
tweenthe inner trajectoriesis modifiedby replacingeach
rib segmentwith a Hermite interpolating profile having a
prescribedblendradius(right image).

5. Feature modeling

Thefishbonemetaphordescribedin thelastsectionnotonly
enablesus to resamplegeometryin a way that stronglyre-
ducesnormalnoise,theadditionalstructuralinformationcan
alsobeusedfor high level featuremodeling.

Changingthecharacteristicsof afeatureis averyfrequent
operationin productdesign.For example in CFD simula-
tions it is oftennecessaryto vary thesharpnessof a feature
(i.e., the radiusof a rolling ball blend)to verify the impact
on theoverall aerodynamics.Roundingandsharpeningare
the operationswhich increaseor decreasethe blendradius
alonga feature.

Figure 8: The roundedfeature is sharpendby settingthe
blendradius for the rib profiles to zero for the upper ring
andto somesmallbut non-zero valuein thelower ring.

On a fishbone–wiseresampledfeatureregion suchmod-
eling operationsarevery easyto implement.Thereasonfor
this is that we have a perfect alignmentof the sampling
grid to trajectoriesandribs. Sincetheribs aregeneratedby
planeintersectionsweadditionallyknow thatthey areplanar
which reducesthefeaturemodelingoperationsto 2D opera-
tionsactingon therib curves.

Thegenericformulationof a featuremodelingoperation
is to selecttwo trajectories,remove thepartof thefishbone
that lies betweenthemandreplaceit by anothermeshthat
fits to the boundaryconditionsimposedby the remaining
parts.Sinceeachrib canbeprocessedindependentlyweonly
haveto implementthemodelingoperationfor aplanarcurve
andthenapplyit to eachrib separately.

The corresponding2D operationto which the feature
modelingreducesis in facta Hermiteinterpolationproblem
wheretwo pointsandtangentsaregivenandaC1 interpolat-
ing curve is sought.TheseHermiteconditionsareimposed
by theremaingpartsof eachrib.

Let us first considerthe roundingor sharpeningopera-
tions. As statedabove, both operationssimply changethe
radiusof the blendandhencethey canbe treatedanalogu-
ously. The genericprofile by which we want to solve the
Hermiteinterpolationproblemis depictedin Fig. 9. It con-
sistsof two straightsegmentsonbothsidesof a circulararc.
This genericprofile is flexible enoughto solve theHermite
problemfor any convex configurationandhasoneadditional
degreeof freedom:thecircleradius.Hencewecanprescribe
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Figure 9: Wecanuseanygenericprofilefor thefeaturemod-
eling as long as it is flexible enoughto solvethe Hermite
interpolationproblemand providesat leastoneadditional
degreeof freedom.

theradiusandfind theresultingC1 interpolantby astraight-
forward construction.Fig. 7 shows an examplewherethe
blend radiusis increasedand Fig. 8 shows the perfectre-
constructionof a sharpfeatureby settingtheblendradiusto
zero.

If wewantto modelmorecomplicatedprofilesweeps,we
simply have to replacethegenericHermiteinterpolant.Fig.
9 shows a parameterizedprofile with two straightsegments
andthreecirculararcs.Theindependentdegreesof freedom
arethe circle radii andtheopeningangleof the centerarc.
Fig. 10 shows theapplicationof this profile to thesamefea-
turethatwasmodifiedin Fig. 7.

Figure 10: Quitesophisticatedmodelingoperationsarepos-
sibleif weusemorecomplicatedprofilesfor the2D Hermite
interpolationoneach planar rib curve.

6. Results

We appliedthe surfaceanti–aliastechniquein the context
of CFD simulationfor conceptualcardesignto a highly de-
tailed meshmodel of the BMW Z8 car. The normal noise
containedin themodelsafter the triangulationanddecima-
tion phasecould effectively be removed. Someresultsare
shown in Fig. 11( . To re–modelthe complicatedstructure
of featuresaroundthedriver’s window took a one–hourin-

teractive session.Oncethe fishboneshave beencreatedfor
eachfeature,theblendradii canbechangedinteractively.

7. Conclusions

We demonstrateda new resampling and anti–aliasing
schemefor thefeatureregionsof agivensurface.Themajor
ideais to align thesamplinggrid to the(estimated)principal
curvaturedirectionsof asweepsurfacein orderto minimize
the normal noise.We presenteda geometricaljustification
for theintuitiveplacementof thesamplepointsalongtrajec-
toriesandcontoursof aroundedfeature:it turnsout thatthis
specialsamplingpatternminimizesthenormalnoisewhich
is measuredin termsof thevariationof normaljumpsacross
meshedges.This discretefairnessmeasurecan be inter-
pretedasa third orderderivative (curvaturevariation)which
is oftenusedin CAGD to measurethefairnessof a surface.
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