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Abstract

We propose a new representation for multiresolution models which uses volume elements enclosed between the
different resolution levels to encode the detail information. Keeping these displacement volumes locally constant
during a deformation of the base surface leads to a natural behaviour of the detail features. The corresponding
reconstruction operator can be implemented efficiently by a hierarchical iterative relaxation scheme, providing
close to interactive response times for moderately complex models.
Based on this representation we implement a multiresolution editing tool for irregular polygon meshes that al-
lows the designer to freely edit the base surface of a multiresolution model without having to care about self-
intersections in the respective detailed surface. We demonstrate the effectiveness and robustness of the reconstruc-
tion by several examples with real-world data.

1. Introduction

Among the many different concepts for freefrom shape de-
sign, the multiresolution editing paradigm has proven to be
the most effective one when it comes to modifying complex
geometric models like the ones reconstructed from massive
3D scan data. The strength of this paradigm lies in the fact
that we can decompose a given 3D object into a sequence
of different models with decreasing level of detail. By stor-
ing the geometric detail information, i.e., the fine features
that are removed when going to a coarser level of detail, we
can reconstruct the full model from a base shape that has a
significantly reduced shape complexity. When altering this
base shape by some freeform editing operation, we can still
reconstruct the detail but now transferred to a modified sur-
face. The result is a global deformation of the given object
with an intuitive preservation of the detail information (cf.
Fig. 1).

A complete multiresolution framework has to provide
three basic operators: the decomposition (analysis), the
freeform editing (modification), and the reconstruction (syn-
thesis). The underlying geometry representation has to pro-
vide data structures to store an object’s shape at several lev-
els of resolution as well as a set of detail coefficients that

Editing

Decomposition

Reconstruction

S̃

S̃′

S

S′

Figure 1: A multiresolution deformation of an original sur-
face S̃ corresponds to changing the (smooth) base surface S
into S′ and reconstructing S̃′ from S ′ and the stored detail
information.
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Figure 2: A multiresolution deformation is composed of a
modification of the base surface (blue) and the reconstruc-
tion of the corresponding detailed surface (red). Since dis-
placement vectors are handled individually the resulting de-
tailed surface shows an unnatural change of volume enclosed
between base and detailed surface (bottom left). As a natural
coupling of the displacements we propose displacement vol-
umes that lead to a more natural behaviour and prevent local
self-intersections of the detailed surface (right).

encode the difference between the levels. In this paper we
restrict to triangles meshes as a generic shape data structure
since these are flexible and efficient enough for most com-
puter graphics applications.

Our focus in this paper is on the representation of the
detail information. Usually the detailed surface is consid-
ered as a displacement of the base surface. In mathemati-
cal notation, the detail information is a vector valued func-
tion d : S → IR3 that associates a displacement vector d(q)
with every point q on the base surface S. Hence, the de-
tailed surface S̃ can be reconstructed from the base surface
by S̃ = {q+d(q) | q ∈ S}.

When the base surface S is replaced by a deformed base
surface S ′ the displacement vectors have to be rotated ac-
cording to local rotations of the base surface’s tangent plane
in order to guarantee plausible detail reconstruction S̃′.
Here, the term plausible is not mathematically defined but
it refers to some intuitive notion of the physical behavior of
elastic material (cf. Fig. 2).

The major difficulty with most established approaches to
detail encoding is that the displacement vectors are handled
individually and are not coupled. While this approach works
well for translational or rotational modifications, it results in
an unnatural change of volume as soon as the base surface is
bent (cf. Fig. 2). Consider the prisms that are spanned by the
original triangles of S̃ over the base surface S: bending the
base surface changes their opening angles thereby altering
the prism volumes. Since the volume enclosed between the
base surface S and the detailed surface S̃ is intuitively sup-
posed to stay constant, this behaviour does not fully satisfy
the plausibility requirements of detail preservation.

A more severe problem of uncoupled displacement vec-
tors is that they do not provide any mechanism to pre-

vent self-intersections. This problem comes in two different
forms: global and local self-intersections. The global form is
a variant of the general collision detection problem. A global
self-intersection occurs when the deforming surface touches
itself which can happen with any surface oriented freeform
deformation tool.

Obviously, the detection and handling of global self-
intersections has to be taken care of by the freefrom editing
operator since the semantics of a global collision depends
on the design intended: are the two parts of the surface sup-
posed to repulse each other or should they merge? In any
case, the handling of global self-intersections cannot be in-
tegrated into the reconstruction operator of a multiresolution
framework since its modeling semantics goes way beyond
the task of plausible detail preservation. Hence we are not
addressing global self-intersections in this paper.

The local self-intersection phenomenon, however, has a
different nature. As shown in Fig. 3, these difficulties typ-
ically arise when the base surface is deformed in a con-
cave manner. Where a local self-intersection occurs, the sur-
face is not colliding with itself but it is folding over it-
self. Expressed in terms of the prisms spanned by the dis-
placement vectors, local self-intersections occur when one
or more of these prisms degenerate. Notice for global self-
intersections usually no individual prism degenerates. Local
self-intersections are primarily due to the detail vector dis-
placement and consequently have to be fixed by the recon-
struction operator.

An obvious way to address this issue is to shift the dis-
placement vectors in tangential direction. However, we have
to do this in a way that adheres to the plausibility of the de-
tail preservation. Adjusting the displacements individually
or propagating the tangential shift by some diffusion oper-
ator applied to the displacement vectors will most probably
distort the geometric detail in a non-plausible way.

In order to address both problems — unnatural change of
volume and local self-intersections — we propose a detail
encoding scheme that is based on displacement volumes in-
stead of displacement vectors. Each triangle of the original
detailed mesh S̃ spans a prism over the base surface S. We
use the volumes of these prisms as detail coefficients. For a
modified base surface S ′ the reconstruction operator has to
find a new mesh S̃′ that has the same connectivity as S̃ and
spans the same prism volumes.

This notion of volume preservation provides a physical
interpretation for the plausibility of the detail preservation:
the detail is supposed to mimic the behavior of elastic but
incompressible materials. Hence we can expect the mul-
tiresolution model to deform like a soft but incompressible
layer attached to a rigid skeleton (cf. Fig. 2). Displacement
volumes can also effectively avoid local self-intersections
(where the surface of a prism would inter-penetrate itself)
since prisms can shear, i.e., their top triangles can move tan-
gentially, without changing their volume (cf. Fig. 3).
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Figure 3: Multiresolution editing enables global deformations with intuitive detail preservation. However, detail reconstruction
based on displacement vectors may lead to a non-plausible change of volume (mid-left) as well as to self-intersections for
concave modifications (mid-right). Displacement volumes instead reconstruct a more natural, non-intersecting surface (right).

An additional preferable property of the volumetric de-
tail representation is that volume coefficients are scalar val-
ues that do not depend on a coordinate system (except for
scaling). In particular they are invariant under rotations and
hence there is no need to adjust the detail coefficients to ac-
count for the modified shape of the base surface (rotation of
the tangent plane).

2. Previous work

In the field of multiresolution mesh editing the standard de-
tail representation are displacement vectors. To obtain an in-
tuitive detail reconstruction these displacements have to be
adjusted to the (modified) base surface S ′, i.e. they have to
be expressed in local frames 6, 7, consisting of the surface
normal and two perpendicular tangent vectors. Zorin et al.29

and Guskov et al.9 both use local frames attached to vertices
to encode the detail information for multiresolution subdivi-
sion or irregular mesh representation.

Displacement vectors having large tangential components
may lead to counter-intuitive reconstructions and can cause
stability problems. Suppressing the tangential component
leads to normal-displacements, i.e. to displacement vectors
that are parallel to the base surface normal. E.g., Guskov
et al.10 and Lee et al.18 compute normal displacements by
shooting rays from the base surface S in normal direction,
resulting in a resampling of S̃. Kobbelt et al.14, 15 go the
other direction: for each vertex in S̃ they find a base point
on S (not necessarily a vertex) such that the displacements
are normal to S. This avoids resampling and hence preserves
sharp features on S̃.

Since in all these approaches every displacement vector
is handled individually, a change of volume as well as local
self-intersections cannot be prevented in general. As a nat-
ural model for the coupling between neighboring displace-
ments, we propose volume prisms spanned by triangles on
the detailed surface S̃ over the corresponding base points on
S.

Local volume preservation not only avoids self-
intersections, but also leads to a more natural — be-

cause more physically based — behaviour of the surface,
a fact observed in many geometry processing areas: Mesh
smoothing methods try to prevent shrinkage by global vol-
ume preservation27, 5, 21, mesh decimation methods keep the
object’s volume constant in order to preserve its global
shape20, 13. Alliez et al.1 minimize the volume inbetween the
original mesh and a coarser version in order to improve the
approximation quality.

Volume preservation has also been used in the context of
freeform deformation (FFD)26, 3, 22: Rappoport et al.25 pre-
serve the volume of trivariate free-form solids. Hirota et al.12

deform solid objects by FFD while keeping the global vol-
ume of the object constant. The major difference to the above
approaches is that we are preserving the local volume distri-
bution between S and S̃ (= detail information) and not only
the total volume of the object S̃ (= global shape informa-
tion). Also we do not restrict the modification, but we adjust
the mesh vertices of S̃ in the reconstruction operator.

Lee et al.19 presented a layered tissue model for facial
animation using volume preservation forces in combination
with a mass-spring system. Since they are not targeting at
exact volume preservation, they do an approximate volume
update: volume differences are compensated for by adjust-
ing the prisms’ heights, i.e. by pushing vertices in normal
direction only. Therefore the tangential movements neces-
sary to prevent self-intersections are not possible. Koch et
al.16 presented a model for facial surgery, consisting of finite
elements connected by a mass-spring system. Although it
provides naturally looking results, true volume preservation
is lacking.

Using Finite Element Methods (FEM) to preserve the de-
tail information requires substantial computations. In order
to reduce computational costs elasticities are usually lin-
earized, leading to problems for larger scale modifications.
Decomposing deformations into rigid and non-rigid compo-
nents enables plausible looking modifications in real-time,
see 23 and the references therein. In this area the central goal
is a plausible looking result, approximate volume preserva-
tion is just one means to achieve this.
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In order to make our multiresolution editing tool use-
ful in CAD-type applications, we have to guarantee a suf-
ficient surface quality beyond visual appearence. Therefore,
we propose to exactly solve the system of volume constraints
instead of computing just an approximation. For FEM the
standard formulation is not well-defined when simulating
strict incompressibility. Hence, to get exact volume preser-
vation, the so called mixed formulation has to be used, lead-
ing to more complicated systems of equations (see 17, 2 for
details).

Moreover, since we want our approach to be generally ap-
plicable we cannot rely on the quality and regularity of pre-
computed meshes, like, e.g., a fixed facial model. Instead we
have to be able to robustly handle any given complex irreg-
ular mesh, and to deal with arbitrarily large modifications.

3. Volumetric detail representation

Let S be a smooth base mesh and S̃ be the original detailed
mesh. We assume that in the initial decomposition (before
the modification), S̃ can be represented as a normal displace-
ment with respect to S, i.e. for every vertex pi ∈ S̃ we can
find a base point qi on S (not necessarily a vertex) such that
pi −qi is normal to S.

Every triangle [pi,p j,pk] of S̃ together with the corre-
sponding base points [qi,q j,qk] on S spans a triangular
prism. Since the quadrilateral faces of these prisms are non-
planar in general we consistently split them into four trian-
gles each by introducing an additional point ci j := 1

4 (pi +
p j +qi +q j). By this we guarantee that neighboring prisms
that share an edge [pi,p j] in S̃ use the same tesselation of
their common quadrilateral face and no artificial asymme-
tries are introduced (cf. Fig. 4).

After this splitting, the boundary surface of each prism is
given by 14 triangles and the volume of the prism can easily
be calculated as a sum of tetrahedra volumes by

V =
1
6

14

∑
i=1

det[ui,vi,wi]

where the ui, vi, and wi are the coordinate vectors of the
corners of the respective triangles. In order to encode the
detail information that is lost when switching from S̃ to S
we store the initial volumes V ∗

j for each triangle j in S̃.

If we want to change the volume of a prism by shifting one
of the vertices p j on the detailed mesh S̃, it is most effective
to move it into the direction of the volume gradient since this
yields the maximum volume change for the minimum vertex
displacement. Let u0, . . . ,u4 be a cyclic enumeration of the
prism corners that are directly connected with p j (cf. Fig. 4)
then the volume gradient is

∇j V :=
∂V
∂p j

=
1
6

4

∑
i=0

ui ×ui+1 (1)

Figure 4: Since the bilinear quadrilateral prism faces are
non-planar in general, they are consistently split by insert-
ing their centroid.

and we have to shift p j by r j = ε∇j V/‖∇j V‖2 if we want
to increase the prism volume by ε.

4. Volumetric detail reconstruction

After the base surface S is deformed into S ′ we have to re-
construct the detailed surface S̃′. Our goal is to find a mesh
such that the volumes of the spanned prisms are identical to
the volumes that the original surface S̃ spans over S. The
correlation between S and S ′ has to be established by a mu-
tual parameterization. In our case it is enough to know the
positions of the base points q′

i on S′ that correspond to the
base points qi on S. This mutual parameterization has to be
provided by the editing operator. In the most common case
when S and S ′ are meshes with the same connectivity, the
correlation between qi and q′

i is defined by storing the posi-
tion of qi in barycentric coordinates with respect to a triangle
in S and then use the same coordinates to recover q′

i from the
corresponding triangle in S ′.

4.1. Volume preservation

With the base points q′
i on S′ we can now define the prisms

[p′
i ,p

′
j,p

′
k,q

′
i ,q

′
j,q

′
k] with the yet unknown vertex positions

p′
i on S̃′. Obviously we are not expecting the p′

i to be nor-
mal displacements of the q′

i because the avoidance of local
self-intersections might make tangential shifts of the p′

i nec-
essary.

We compute the positions of the vertices p′
i by an iterative

scheme. Let p′
i(s) be the position of the vertex p′

i after s
iteration steps. If this vertex has valence n then its position
affects the volumes V1(s), . . . ,Vn(s) of n surrounding prisms,
whose target volumes are V ∗

1 , . . . ,V∗
n . Using equation (1) we

can find an update vector ri, j for each of the prisms such that
setting p′

i(s + 1) to p′
i(s)+ ri, j adjusts the volume V j(s + 1)

to the target value V∗
j . In fact, the update vector defines a

plane

Hi, j :
{

x |rT
i, j x = rT

i, j
(

p′
i(s)+ ri, j

)

}
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such that any position p′
i(s + 1) ∈ Hi, j would satify the vol-

ume constraint.

Since the position of p′
i affects n surrounding prisms,

we find n planes Hi,1, . . . ,Hi,n and the optimal position for
p′

i(s+1) is the one minimizing the local error

Ei :=
n

∑
j=1

|V∗
j −V j(s+1)|2

=
n

∑
j=1

‖∇i V j(s)‖
2 dist(p′

i(s+1), Hi, j)
2

which can be computed by solving, e.g, the normal equa-
tion of this least squares problem 8. In practice, the itera-
tion scheme should be damped slightly to guarantee conver-
gence, i.e., instead of using the optimal position that mini-
mizes Ei we rather use a weighted average between the opti-
mal position and the previous position p′

i(s).

For efficiency reasons we can avoid solving a least squares
problem for each vertex by minimizing the quadratic func-
tional Ei with a gradient descent method. This corresponds
to a simultaneous minimization of the global error functional

E := ∑
j
|V∗

j −V j|
2

where the sum is over all prims. The respective gradient con-
sists of the partial derivatives

∂E
∂pi

= − ∑
j∈P(i)

2(V∗
j −V j)∇i V j

where the sum is built over all prisms adjacent to pi.

The remaining question is how to find good starting val-
ues p′

i(0) for the iteration scheme. This question is not trivial
if we want to avoid self-intersections in the initial configura-
tion. Extremly bad starting values might cause the iterative
minimization to get stuck in a local minimum. Therefore we
prefer clean initial configurations which also accelerates the
convergence significantly in some cases.

A reasonable assumption is that the modified base surface
S′ has no self-intersections itself. Since the base points q′

i
are lying on this surface we can exploit the (topological) one-
to-one correspondence with the vertices pi of S̃ to define a
mesh M that has approximately the same shape as S ′ and
the exactly same connectivity as S̃′. The mesh M actually
corresponds to the solution of the volume preservation if we
set all target volumes to zero.

Based on this observation, we can interleave the itera-
tive volume preservation scheme with a scaling step of the
prism volumes. Using a parameter 0 < h0 < 1, we can ini-
tially scale down all target prism volumes by this factor h0
and apply the iterative vertex update. Upon (numerical) con-
vergence, we increase the factor to h1,h2, . . . until we reach
unity. After each volume scaling step hk → hk+1 we can use
the final position p′

i of the previous round as starting posi-
tions for the next round. Moreover, if we choose h0 small

Figure 5: Constraining the prism volumes still leaves one
degree of freedom per vertex. All three configurations pre-
serve the target volumes, but may contain perturbations in
normal direction (bottom left) or tangential direction (bot-
tom right). These perturbations usually affect the highest fre-
quency band.

enough, we can use the base point positions q′
i as starting

positions in the first round which guarantees that we never
have to start in a configuration with local self-intersections.

4.2. Regularization

When analysing the iterative volume preservation scheme,
we find that the solution S̃′ is not well-defined. Simply
counting the degrees of freedom shows that each vertex of
S̃′ yields three free parameters while each triangle of S̃′

puts one constraint. Since the number of triangles is approx-
imately two times the number of vertices, it turns out that for
a mesh S̃′ with m vertices (and hence 2m triangles) the so-
lution is underdetermined by 3m−2m = m degrees of free-
dom. As a consequence, the above iterative scheme will con-
verge to a solution but not necessarily to the best solution.
One standard approach in numerical analysis to handle un-
derdetermined optimization problems is to add a regulariza-
tion force that pushes the iterative scheme towards a better
solution.

In our setting it is quite obvious how to define this reg-
ularization force by looking at the set of candidate meshes
S̃′ that satify the volume constraints (cf. Fig. 5). Intuitively,
each volume constraint fixes the average height of the corre-
sponding prism’s top face over the base face which is equiv-
alent to fixing the height of the centroid of the top trian-
gle. As a consequence, small perturbations in normal direc-
tion lead to meshes also satisfying the volume constraints
but exhibiting rotations of the triangles around their cen-
triods (Fig. 5, bottom left). Additional perturbations in tan-
gential direction may also be compensated for by adjusting
the offset heights (Fig. 5, bottom right). This shows that the
variations among different volume preserving candidates are
mostly on the highest frequency band. These high frequency
variations, however, are easy to detect and eliminate by a
properly designed low-pass filter.

In order to reduce the influence of the base surface S ′ on
the action of the regularization force, we apply the low-pass
filter to the displacement vectors d′

i = p′
i −q′

i instead of the

c© The Eurographics Association and Blackwell Publishers 2003.
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points p′
i . Since we also want to limit the impact on the con-

vergence behavior of the volume preservation iteration, we
apply different filters to the tangential components of the dis-
placements and to the length components. In both cases we
make use of the fact that the deformation of the base surface
is smooth and hence the local variations of displacements
caused by local bending of the base surface are small.

A very natural regularization constraint is to push the
minimization towards a volume preserving solution S̃′ that
has the least distortion in surface metric w.r.t. the original
detailed surface S̃. As shown in 24, 4, a discrete harmonic
parameterization (i.e. an angle preserving mapping) can be
computed by Laplacian smoothing of the respective 2D pa-
rameter values, using a Laplacian operator that is discretized
with special weights determined by the metric of the 3D sur-
face. Wood et al.28 propose the use of bi-Laplacian tangential
smoothing in order to regularize a triangulation/parameteri-
zation. Combining these two approaches we use the corre-
sponding weights derived from the original surface S̃ in or-
der to define a tangential Laplacian smoothing operator on
S̃′:

p′
i 7→ p′

i +λ
(

I−nnT
)

∆
S̃

(

p′
i
)

,

where n is the surface normal of S̃′ at p′
i and λ is a damp-

ing factor. This relaxation operator will move the vertices p′
i

in their respective tangent planes in order to minimize the
metric distortion to the original surface S̃.

For the length of the displacement vectors di = ‖d′
i‖ we

also have to find a correlation between neighboring base
points. Let fi = ‖pi − qi‖ be the length of the displace-
ments in the intitial configuration (S, S̃) before the modi-
fication. Since we want to preserve the volume between the
surfaces S ′ and S̃′ after the deformation, the thickness of
the incompressible layer is locally a function of the base
surface stretch. If the base points qi, q j , and qk of a prism
move closer together then the height of the prism (and hence
the lenghts of the displacements) will increase. If they move
apart, the height will decrease. Again, since the base surface
stretch smoothly varies over S ′ (smooth deformation), the
scaling of the fi will also vary smoothly, i.e. there exists a
smooth scalar function α(i) such that the lengths of the dis-
placements after the deformation are di ≈ α(i) fi.

It follows that the regularizing filter for the displace-
ment lengths should push the solution di towards α(i) fi
for some unknown but smooth function α(i). We construct
such a filter as follows: instead of minimizing the difference
di − α(i) fi we rather minimize the deviation of the ratio
di/ fi −α(i) since this penalizes relative differences instead
of absolute ones (the same absolute deviation is less severe
for large displacements). To obtain a smoothing filter, we
apply the Laplace operator

∆
(

di

fi
−α(i)

)

= ∆
(

di

fi

)

−∆(α(i)) ≈ ∆
(

di

fi

)

where we can neglect the term ∆(α(i)) under the assump-
tion that α(i) is smooth and does not contain relevant high
frequency components. The requirement ∆(di/ fi) = 0 leads
immediately to the simple filter

di 7→ di +λ fi ∆
(

di

fi

)

.

This filter regularizes the length of the displacement vectors
by taking the original lengths fi into account. Notice that we
are using the lengths fi only in the regularization. They help
to stabilize but they do not affect the volume preservation.

The regularization force could be combined with the vol-
ume optimization by Lagrangian multipliers, leading to a
constrained minimization problem. For efficiency reasons
we instead interleave several iterations of (unconstrained)
volume optimization with one regularization step. Similar to
Augmented Lagrangian methods we increase the weight of
the volume optimization over the regularization during the
optimization process.

The missing constraints of the initial volume preserva-
tion problem can results in the existance of solutions that
contain self-intersections. These self-intersections, however,
represent high frequencies in the surface and therefore are
easily avoided by the regularization process. Hence, starting
from a clean initial configuration the regularization forces
drive the iterative scheme to a volume preserving solution
without perturbations in surface metric and displacement
lengths, and therefore without self-intersections. Although
we have no theoretical guarantees for a removal of all self-
intersections, the proposed approach worked robustly in all
our examples.

4.3. Implementation

The volume optimization as well as the regularization are
relaxation methods. A well known result from numerical
analysis states that these types of processes tend to rapidly
smooth out high-frequency errors, but the convergence rate
for the low frequencies of the error is impratically slow 11.

Therefore we use a hierarchical multi-grid approach to
increase to overall rate of convergence, as proposed in 14.
Starting from S̃ we construct multiple levels of decreasing
(topological) detail by mesh decimation. Using the solutions
computed on coarse levels as initial values for the optimiza-
tion on finer levels leads to an efficient solver for the vol-
ume optimization. The resulting complete volumetric detail
reconstruction algorithm is sketched in Listing 1.

The complexity of the resulting hierarchical reconstruc-
tion operator is linear in the number of prisms, i.e. the num-
ber of triangles of S̃. One multigrid cycle can solve for about
14k volume constraints per second on a 2.8 GHz Pentium
processor. Since each prism is decomposed into 14 tetrahe-
dra this corresponds to about 200k tetrahedron volumes per
second. As described in the last section, we have to solve

c© The Eurographics Association and Blackwell Publishers 2003.
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for each volume scaling h0, . . . ,hk = 1
{

for each multigrid level l0, . . . , lg
{

do until convergence
{

apply n iterations of volume preservation
apply m iterations of regularization

}
prolongate solution to next level li+1

}
}

Listing 1: Outline of the volumetric detail reconstruction al-
gorithm. Typical values are: k = 5,g = 10,n = 10,m = 2.

the volume optimization on several volume-scales ε = h0 <
.. . < hk = 1 in order to robustly handle self-intersections,
with k typically ranging from 5 to 8 depending on the com-
plexity of the modification.

5. Modeling framework

In addition to the reconstruction operator described in the
previous sections we also have to provide a decomposition
operator and a shape editing operator to obtain a full mul-
tiresolution modeling framework.

The decomposition operator separates the original de-
tailed surface S̃ into a less detailed smooth base surface S
and detail information D such that S̃ can be reconstructed
from S and D. Since S corresponds to the low frequencies
of S̃ and D to its high frequencies, the decomposition is usu-
ally done by low-pass filtering S̃ 14, 15, 9.

The editing operator follows the metaphor described in
Kobbelt et al.14: the user selects a region of the surface that
is subject to change and a region that acts as handle. The
desired transformation is applied to the handle region and
the modifiable region is used to smoothly blend between the
transformed and the fixed part of the mesh. This modification
changes the base surface S to S ′. The respective detailed
surface S̃′ is then generated by the reconstruction operator
(cf. Fig. 1).

Because the reconstruction operator as described in sec-
tion 4 will be too slow for interactive mesh editing of com-
plex models we propose two modifications to get better re-
sponse times.

In an interactive modeling application the editing oper-
ator can guarantee small-scale modifications from frame to
frame, corresponding to small time-steps in a dynamic simu-
lation. Since this avoids (large) self-intersections in the start-
ing configuration we may omit the volume scaling step and
use the previous solution as a starting value instead. Splitting
a large scale deformation into several incremental ones for

dynamic applications — instead of splitting it into multiple
volume scales for static simulations — will not reduce the
computational cost for the complete modification. However,
it will amortize the computation over several intermediate
frames and hence give the user faster feedback during the
modification.

In 23 deformations were simulated on a rather coarse tetra-
hedral mesh, but a finer triangle mesh was used to represent
the skin surface. In a similar way we can restrict the volume
optimization to the coarse levels of our multigrid hierarchy
and derive the positions p′

i on the finest level by the regu-
larization forces only, resulting in an additional speed-up of
about 20% in our experiments.

In our system we use these techniques to get faster re-
sponse times during the user’s mouse motion and switch
back to the exact computation once the user releases the
mouse. This enables the interactive handling of moderately
complex models.

6. Results

In this section we show the general behaviour of the vol-
umetric reconstruction operator and provide examples with
synthetic and real datasets.

As already shown in Fig. 3 we can differentiate between
convex and concave modifications. A convex modification
of the base surface will increase the opening angles of the
volume prisms, causing the respective volumes to grow and
the detailed surface to stretch. Therefore the volume preser-
vation typically decreases the offset’s height in these areas in
order to decrease the volumes down to their original values.

Concave modifications of S compress the volume prisms
by decreasing their opening angles. Depending on the detail
length and the local curvature of S ′ this may lead to self-
intersections of the detailed surface S̃′. The volume preser-
vation will therefore have to expand the prisms both in nor-
mal and tangential directions.

The left part of Fig. 6 shows a cylinder bended by 90
degrees. The leftmost model, reconstructed by normal dis-
placements, shows an unnatural increase of volume in the
convex parts and self-intersections in the concave region. Its
detailed surface S̃′ is rendered transparently in order to also
show the base surface S ′. Displacement volumes remove
the self-intersections and preserve the volume, resulting in
a plausible detail reconstruction (center).

Using the same base surface but a cuboid as detailed sur-
face instead, the right part of Fig. 6 shows the same be-
haviour as in the previous example. In addition it demon-
strates that our reconstruction operator correctly handles
high-frequency geometric detail, since the sharp edges are
preserved and deformed in a very natural manner.

While the previous models were synthetic regular trian-
gulations of moderate complexity, we now demonstrate the
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Figure 6: A cylinder and a cuboid bended by 90 degrees. Displacement vectors lead to unnatural changes in volume and self-
intersections (Pic. 1, 2, 4), displacement volumes manage to solve both problems (Pic. 3, 5). In addition to natural volume
preservation and avoidance of self-intersections, displace volumes also preserve high-frequency geometric detail (Pic. 5).

Figure 7: A scanned toy model was modified to bend its arm.
Here displacement vectors create self-intersections immedi-
ately, while displacement volumes enable also larger scale
modifications with natural detail preservation.

effectiveness and robustness of the volumetric detail repre-
sentation for complex irregular meshes.

Fig. 7 shows a scanned toy model of Tinky-Winky. When
bending the arm the normal-displaced surface self-intersects
almost immediately since the layer between base and de-
tailed surface is rather thick and hence the displacement
vectors are long. The depicted position contains severe self-
intersections in the normal-displaced setting that are com-
pletely removed by the volumetric reconstruction operator.
The volume preservation was restricted to the arm, with a
mesh complexity of 41k triangles.

In the last example, shown in Fig. 8, we bend the left leg
of Michelangelo’s David. The leg was cut out of a decimated
version of the model and consists of 33k triangles. Again,
normal displacements lead to self-intersections, while dis-
placement volumes do not. Although this example is not
anatomically correct (we are not using different material
properies to simulate different tissues), it effectively avoids
self-intersections and looks quite natural.

7. Conclusion and future work

We presented displacement volumes, a new detail represen-
tation for multiresultion hierarchies. Locally preserving the
volume enclosed between the base surface and the detailed

surface results in a more natural detail preservation of the
deformed surfaces, mimicing the behaviour of elastic but
incompressible materials. In combination with the properly
designed regularization force, displacement volumes also ef-
fectively avoid local self-intersections in the reconstructed
detailed surface.

Our method robustly handles complex irregular triangle
meshes and is able to effectively deal with large scale mod-
ifications. Using a hierarchical relaxation scheme, the vol-
umetric reconstruction operator can be implemented effi-
ciently, leading to close to interactive response times. Since
the volume optimization is based on a straightforward gra-
dient descent method, we expect to achieve further perfor-
mance gains by using a more sophisticated minimization
scheme in the future.

As shown in 9, 15 decomposing the surface into only two
frequency bands may not be sufficient for some editing oper-
ations. Therefore a natural and straightforward extension of
our scheme would be to decompose the surface into multiple
layers and to encode the detail information between succes-
sive levels by displacement volumes.
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