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Abstract

In an increasing number of applications triangle meshes
represent a flexible and efficient alternative to traditional
NURBS-based surface representations. Especially in engi-
neering applications it is crucial to guarantee that a pre-
scribed approximation tolerance to a given reference ge-
ometry is respected for any combination of geometric algo-
rithms that are applied when processing a triangle mesh.

We propose a simple and generic method for comput-
ing the distance of a given polygonal mesh to the reference
surface, based on a linear approximation of its signed dis-
tance field. Exploiting the hardware acceleration of mod-
ern GPUs allows us to perform up to 3M triangle checks
per second, enabling real-time distance evaluations even
for complex geometries. An additional feature of our ap-
proach is the accurate high-quality distance visualization
of dynamically changing meshes at a rate of 15M triangles
per second.

Due to its generality, the presented approach can be used
to enhance any mesh processing method by global error
control, guaranteeing the resulting mesh to stay within a
prescribed error tolerance. The application examples that
we present include mesh decimation, mesh smoothing and
freeform mesh deformation.

1. Introduction

In most computer graphics applications, triangle meshes
are the standard surface representation, since they offer high
flexibility, as well as very efficient computing and hardware
accelerated rendering. In recent years, triangle meshes also
gained increasing attention in the field of engineering appli-
cations, starting to assist or even replace classical NURBS
based systems in many areas.

For this type of applications an approximation tolerance
always has to be guaranteed, for instance to ensure that the
results of a numerical simulation are meaningful. As a con-
sequence, it is crucial to provide an exact or at least conser-

vative global error bound for all algorithms that are to be
applied to the mesh before it is used in a simulation.

As the input meshes are in most cases generated ei-
ther by tesselating CAD surfaces or by scanning and
reverse-engineering a physical prototype, a typical mesh
pre-processing session includes geometric optimization
(de-noising, fairing) and topological optimization (sim-
plification, re-meshing). As the exact result of these
optimizations is often hard to predict, they are usually ap-
plied repeatedly to (regions of) the input mesh in any
order.

Although each of these mesh processing algorithms may
provide some kind of error bound on its own, these indi-
vidual errors can accumulate during multiple optimization
loops. In order to prevent this, a global approximation er-
ror to the initial reference surface has to be taken into ac-
count. To allow for greatest flexibility this global error mea-
sure should be independent of the individual algorithms to
be applied to the mesh.

In the context of mesh decimation, Klein et al. [9] pro-
posed to compute the approximation error between an orig-
inal mesh and its decimated version using the two-sided
Hausdorff distance. Although this distance represents the
exact deviation between two surfaces, it is computationally
too expensive for complex meshes.

When decimating densely sampled or 3D-scanned in-
put meshes, Kobbelt et al. [11] argue that, like in the scat-
tered data interpolation setup, it is sufficient to consider the
one-sided Hausdorff distance from the original vertices to
the decimated mesh only. This error measure can be im-
plemented quite efficiently if the underlying atomic simpli-
fication operator is the half-edge collapse. In this case all
vertices of the current mesh coincide with original vertices,
such that only the distances from the already removed orig-
inal vertices have to be taken into account. For more gen-
eral mesh processing algorithms, however, this optimiza-
tion technique is not applicable, since, e.g., after one mesh
smoothing iteration all vertices have been relocated, such
that the distances from all the original vertices have to be
computed.



An alternative and very intuitive global error measure is
provided by simplification envelopes [3] that guarantee the
mesh to stay within a prescribed tolerance volume around
the initial reference mesh. In the original paper polygonal
meshes are used for constructing the simplification enve-
lope by offsetting the reference mesh in positive and nega-
tive normal direction and for performing the inside test for
a given candidate triangle. Both problems are hard to solve
robustly using triangle meshes, resulting in an algorithmi-
cally and computationally very complex method.

Comparing the strengths and drawbacks of explicit and
implicit surface representations [10], the latter ones are
clearly preferable for the required inside tests of a given
tolerance volume. Zelinka and Garland [19] therefore pro-
posed to discretize the characteristic function of the toler-
ance volume into a uniform binary permission grid. For
querying a candidate triangle it is rasterized into the grid
and tested to pass only through “valid” grid cells that
lie completely inside the tolerance volume. However, the
resulting piecewise constant approximation suffers from
aliasing artifacts, requiring a rather fine resolution of the
grid, that, in turn, is limited by the main memory.

A more memory efficient representation was proposed
by Frisken et al. [6], using an adaptively sampled piece-
wise linear approximation of the signed distance field. An
also piecewise linear, but C'~! approximation of the dis-
tance field was shown to lead to a further reduction of mem-
ory consumption [18]. Although these two approaches con-
sume significantly fewer memory, testing whether a given
triangle lies within an approximation tolerance gets more
complicated.

We propose an approach that can be categorized to lie
between permission grids and the latter two methods. We
use a regularly sampled piecewise linear approximation to
the signed distance function of the reference mesh, such
that, compared to permission grids, the better approxima-
tion properties enable us to work with coarser grid resolu-
tions. Although the distance test for a given triangle is more
complicated than in [19], it is much simpler compared to
[6, 18], since we use a regular sampling.

To check a given candidate triangle the distance values in
its interior have to be determined by linearly interpolating
the distance values stored at the sampled grid points. How-
ever, this tri-linear interpolation task is exactly what tex-
ture units of graphics hardware have been optimized for. By
representing the piecewise linear distance volume as a 3D
texture we are able to exploit the hardware acceleration of
modern GPUs. Testing whether a given triangle lies within
the tolerance volume then basically amounts to rendering it
using the 3D distance texture — that is tri-linearly interpo-
lated by the texture unit of the GPU.

An obvious application of our approach is the accurate
and efficient visualization of the approximation error be-
tween two meshes by color-coding the respective per-pixel
distance values using high-quality post-classification meth-
ods known from direct volume rendering [13]. In compari-
son with a 2D texture based error visualization like in [2],
we do not have to pre-compute a per-triangle error texture,
but exploit the 3D texturing hardware instead. As a result,
we can visualize the distance of a dynamically changing
mesh to a reference surface at a rate of 15M triangles/sec.

We first present an efficient method for initially comput-
ing a 3D distance grid in Sec. 2 and show how to use it
as 3D distance texture in Sec. 3. Sec. 4 describes the imple-
mentation of a generic distance check for a given triangle on
the GPU. Using these ingredients our method can be encap-
sulated into an easy-to-use module for distance checks that
can be incorporated into any mesh processing algorithm. In
Sec. 5 we show application examples for mesh decimation,
mesh smoothing and mesh deformation.

2. Distance Field Generation

Given an initial reference surface represented by a trian-
gle mesh, we compute a piecewise linear approximation of
its signed distance field by sampling it at the nodes of a reg-
ular 3D grid.

In order to efficiently compute distance values at the grid
nodes we use fast marching methods [16], as also proposed
in [12]. We first have to initialize the marching process by
computing the distance values in the immediate vicinity of
the reference mesh. For each triangle we consider all grid
nodes lying in the triangle’s slightly enlarged bounding box
and compute the exact distances of these nodes to the cur-
rent triangle. As the bounding boxes of neighboring trian-
gles overlap, we may compute several distance values for a
grid node. In this case we simply store the minimal (abso-
lute) value.

Since we want to approximate a signed distance field,
we have to determine whether a grid node lies inside or out-
side the reference mesh for each distance computation. This
test requires to consider the angle between the vector from
the grid node p to its closest point on the triangle ¢ and the
normal n(c) at this point, i.e., p is defined to be inside iff
(p—c¢)'n(c) < 0.

The robustness and reliability of this inside test strongly
depends on the way by which the interpolated normal n(c)
is computed. Using barycentric normal interpolation within
the triangle and computing per-vertex normals using angle-
weighted averaging of face normals has been proven to
yield correct results [1].

After this initialization we use a standard fast marching
method to derive distance values at the yet unknown grid
nodes, using an isotropic marching with a constant speed



Figure 1. A volume rendering of an ¢ tol-
erance volume around the Stanford bunny
model.

function being equal to 1. Starting from the already initial-
ized grid nodes, all their immediate neighbors are inserted
into a min-heap based on their distance from the advanc-
ing front. After conquering the nearest of these candidate
nodes, all of its non-conquered neighbors are inserted into
the heap. This evolution is usually continued until all grid
points have been conquered.

In most cases we later want to test whether a given trian-
gle lies within a user-defined tolerance volume of width ¢,
therefore distance values being greater than ¢ are not needed
(cf. Fig. 1). As a consequence, we can stop the marching
process as soon as a grid node of distance greater than € is
conquered. All remaining grid nodes are farther away and
their distances are set to infinity.

Notice that the terms inside and outside are well-defined
for closed solid input meshes only. If the input mesh is not
closed, we can fall-back to an unsigned fast marching that
we slightly adjusted to estimate the missing sign informa-
tion similarly to the normal-based inside test of the initial-
ization phase. This corresponds to a kind of extrusion of the
mesh boundary and works well in practice if the width of
the error volume is not too large.

In addition to the maximum error ¢, the spatial extent and
resolution of the grid have to be specified for the initializa-
tion. The spatial size of the grid is chosen to be the bound-
ing box of the input mesh enlarged by ¢ in each direction.
In order to provide an easier comparison to the method of
[19], we use the same precision parameter p > 1 for ad-
justing the grid resolution R, although we will need signifi-
cantly smaller values of p to achieve comparable results:

R(p) = LP\IH :

where ¢ again denotes the maximum tolerable error and D

the length of the grid’s diagonal, resulting in an edge length

of grid cells h = % = %.

Figure 2. Using 3D distance textures and
post-classification transfer functions results
in a per-pixel accurate distance visualization.

The quality of the distance field approximation is deter-
mined by the grid resolution R, or the edge length h, re-
spectively. The tri-linear interpolation within a grid cell may
under-estimate the exact error by one half of the cell diag-
onal in the worst case. Hence, we adjust the user-specified
error tolerance to
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in order to take this into account. In our experiments, how-
ever, an adjustment by % turned out to be sufficient and
closer to the expected under-estimation.

Since the distance field is smooth in most regions, and
since we we are approximating it by a piecewise linear func-
tion, the actual error of our approximation decreases like
O(h?) when increasing the grid resolution [4]. In contrast,
the piecewise constant approximation of [19] improves just
linearly. As we will show in Sec. 5, this allows to use
coarser grid resolutions, i.e., smaller values for p, compared
to them.

Although we use fast marching for sampling the signed
distance field, any other method to compute distances from
points to a reference triangle mesh could also be used. An
interesting alternative would be a method like [8, 17], com-
puting a distance field based on rendering generalized cone
primitives. Combining such a method with our approach we
could not only evaluate, but also generate the signed dis-
tance field completely on the GPU.



3. 3D Texture Setup

In order to use the 3D grid of signed distance val-
ues as an OpenGL 3D texture, we first have to adjust its
resolution to be a power of two in each direction. This
can easily be achieved by expanding the grid with empty
rows, columns, or slices, and by adjusting its spatial extent
accordingly. Notice, however, that the OpenGL extension
ARB_texture_non_power_of_two relaxes this condi-
tion and avoids the waste of texture memory, but there is
no implementation available yet.

Additionally we have to adjust the storage type, as the
grid contains signed floating point values that are to be con-
verted to unsigned byte values (e.g. ALPHAS8). Mapping the
range of [—&, €] to [0, 255] leads to a 8 bit quantization of
the possible errors. Although this turned out to be sufficient
in all our experiments, one could also use 16 or 32 bit inte-
gers for higher precision or even switch to floating point 3D
textures (ATI_texture_float).

Rendering a triangle by accessing this 3D distance tex-
ture by texture coordinates based on vertex positions (rel-
ative to the grid) will rasterize the triangle and automati-
cally compute the linear interpolation of the distance values
in the triangle’s interior. Since OpenGL assumes texture co-
ordinates to be assigned to centers of grid cells, i.e., texels,
instead of to grid nodes (see [15], p. 134), the texture co-
ordinate ¢(p) corresponding to the 3D point p is computed
by

T
t(p) _ p-o+ [g’%’%]
(R+1)h ’

h denoting the edge length of a cell, R being the grid res-
olution and o the lower left front corner of the grid. If the
grid resolution differs for x, y and z, the normalization is
done component-wise. This computation of texture coordi-
nates can be implemented very efficiently by using auto-
matic texture coordinate generation in object space, such
that it comes at no additional cost for the CPU.

The setup described so far can already be used for
high-quality pixel-accurate distance visualization. A trans-
fer function which maps the interpolated distance values to
a given color range can be represented by a second RGB
texture, such that a dependent texture lookup results in the
desired color coding of per-pixel distance values (cf. Fig. 2).
This corresponds to high-quality post-classification meth-
ods frequently used in hardware-accelerated direct volume
rendering [13].

4. Distance Testing

In this section we describe how to use the 3D distance
texture for implementing a generic test whether or not a
given triangle lies completely within a tolerance volume
around the reference surface. The idea is basically the same

as for the distance visualization: we assign a special color
to distance values greater than the prescribed tolerance, ren-
der the candidate triangle and detect whether this color ap-
pears in the frame buffer.

As described in the last section, rendering a triangle us-
ing the distance texture will interpolate and rasterize the dis-
tance function. Notice that the resulting texture values de-
pend on the 3D texture coordinates only, such that we can
adjust the vertex positions as long as the texture coordinates
stay the same.

Instead of perpendicularly looking at each candidate tri-
angle, we simply set its 2D vertex positions to be (0,0),
(1,0) and (0,1), but still use the correct texture coordinates
computed from the actual 3D positions of its vertices. In or-
der to have a sufficient resolution in the rasterization of the
candidate triangle, the edge length [ is determined such that
the pixel resolution equals the 3D texture resolution. If pg,
P1 and p; denote the positions of the triangle’s vertices, this
edge length is

1
= [+ max {lpo ~ pull s =l 22~ pol} ]

In order to detect pixels violating the error bound e,
we use a transfer function assigning a completely transpar-
ent color (o« = 0) to distance values < ¢ and an opaque
color (« = 1) otherwise. Using the OpenGL alpha test
we discard all transparent pixels, such that as soon as one
pixel is rendered, we know that the triangle violates the er-
ror bound. This, however, can easily be checked using oc-
clusion queries (ARB_occlusion_query) that return the
number of pixels being rendered during a query period.

Error-checking a given candidate triangle there-
fore amounts to computing the edge length [ and tex-
ture coordinates ¢(p;) and then rendering the 2D triangle
A((0,0), (1,0),(0,1)). Notice that we cannot use auto-
matic generation of texture coordinates as the vertex po-
sitions are altered. Instead, we pass the vertex positions
p; in a texture coordinate register and use a texture ma-
trix for computing ¢(p;).

Since querying the number of rendered pixels stalls the
rendering pipeline, frequent occlusion queries using just
a small number of triangles each are not very efficient.
However, the ARB_occlusion_query allows for several
queries in parallel, and additionally — depending on the ap-
plication — a single query may be used for testing several
triangles at once by sequentially rendering all of them be-
fore checking the number of rendered pixels. An example
situation may be to test all triangles being incident to a mod-
ified vertex. In the extreme case of the FFD modeling tool
in Sec. 5, we even use just one query for error-checking the
complete deformed mesh.



model #tri. input  #tri. output grid size error  FM (s) Deci(s) total (s) QEM (s)
Bunny 70K 530 74 x 73 x58 0.92% 1.7 2.3 4.0 2.0
Horse 96k 414 85 x 71 x42  0.99% 1.9 32 5.1 2.6
Venus 269k 410 53 x 74 x 74  0.96% 5.0 10.3 15.3 8.8
Buddha M 1955 45 x 101 x 45  1.00% 18.0 39.6 57.6 34.5

Table 1. This table reports results and timings for decimating several models using an error toler-
ance of 1% of the bounding box diagonal and a grid precision p = 1.1. The given error is the Haus-
dorff distance from the decimated mesh to the original one, computed using Metro [2]. Timings are
given in seconds for fast marching (FM), decimation (Deci) and in total. The last column reports the
timings for decimating to the same target complexity without any global error test.

5. Applications

We encapsulated the distance texture generation and the
generic triangle test within an easy-to-use global error mod-
ule. After initializing the distance texture by specifying a
reference triangle mesh, the error tolerance ¢, and the grid
resolution, an arbitrary list of triangles can be tested. In ad-
dition, the distance texture can also be used to visualize the
error by color-coding per-pixel distances. All timings we
give in this section have been acquired on a 2.8GHz Pen-
tium 4 and a GeforeFX 5950 graphics card.

The first example application we enhanced by this
global error module is mesh decimation. Our implemen-
tation closely follows the one of Zelinka and Garland
[19] to enable a comparison of both methods. In each it-
erative decimation step a priority queue based on er-
ror quadrics provides the best edge to be collapsed [7].
The corresponding edge collapse is simulated and all af-
fected triangles are tested to stay within the prescribed er-
ror bound by our GPU-based distance module. If they do,
the collapse is performed, otherwise it is discarded. No-
tice that in this setting each candidate edge collapse
leads to one query for about six triangles simultane-
ously.

Table 1 lists the decimation results and timings for sev-
eral models. Based on these values a comparison with per-
mission grids (normalizing by the unbounded QEM method
used in both papers) shows that our approach is faster by a
factor of about 1.5-2 for the tested models. Note also that
we derive comparable results using a grid precision factor
p = 1.1, compared to p = 4 for permission grids. Al-
though we use one byte for each grid node instead of one bit
only, our memory consumption is still smaller by a factor of
about 6. Notice that for larger grid resolutions, e.g., when
using smaller errors, the advantage of our piecewise linear
approximation pays off even more due to the quadratic ap-
proximation order.

The second algorithm to which we add an error control
is mesh smoothing [5]. In each iteration an update vector
for each vertex is computed based on its Laplacian or Bi-
laplacian vector. This update step is simulated for each ver-
tex and its one-ring triangles are tested to stay within the
error bound. If one of these triangles violates the error tol-
erance, the position of the vertex is simply reset to its pre-
vious value. This error-bounded Bilaplacian smoothing can
be performed at a rate of about 270k vertices per second (cf.
Fig. 3).

The final example is a freeform deformation based mod-
eling tool [14]. A regular 3D lattice of control points is used
to deform the space around a given surface using a trivariate
tensor-product NURBS function. Evaluating this volumet-
ric function at a 3D point p yields its new position after the
modification. One drawback of this otherwise intuitive user
interface is that it is hard to predict by which amount the
surface is changed when moving several control points. Af-
ter integrating our global error module, the distance visual-
ization gives real-time feedback to the designer (15M trian-
gles/sec), such that precise deformations can be performed
at no additional cost. In addition, a global error check can
be applied to all triangles being affected by a deformation
using one global query only. Blocking a deformation that
would otherwise violate the error tolerance ensures that the
deformed model does not deviate too much from a given
reference surface. As pipeline stalls are avoided when using
one single query for all affected triangles, this error check
can be applied at a rate of 3M triangles/sec.

6. Conclusion

We presented an efficient method for computing and
evaluating tolerance volumes around a given reference sur-
face. The initialization phase is based on highly efficient
fast marching methods, requiring just a couple of seconds
for moderately complex models.



Figure 3. The result of an error bounded Bi-
laplacian smoothing of a 50k triangles Max
Planck model.

Using this distance volume as a 3D texture exploits hard-
ware acceleration and provides real-time visualization of
the deviation from the reference geometry. As no 2D error
textures have to be precomputed, our method can be used to
visualize distances even for dynamically changing meshes.

Using special transfer functions and occlusion queries
results in an application-independent global error check for
a set of given candidate triangles. Exploiting hardware ac-
celeration for the rasterization and tri-linear interpolation
enables a highly efficient implementation. Since the perfor-
mance of modern GPUs increases significantly faster than
the performance of CPUs, the efficiency gain of GPU-based
methods is expected to get even larger in the future.

Besides its high efficiency, one of the main advantages of
our approach is that it is both easy to use and easy to imple-
ment, since all complicated algorithmic tasks are performed
by the graphics card. Although texture memory is practi-
cally more limited than main memory, the possible grid res-
olutions have proven to be sufficient due to the piecewise
linear distance field approximation.

Future work would include to delegate also the distance
field generation to the GPU, as proposed by [17]. Addition-
ally, our distance field evaluation is not restricted to triangle
meshes, but is applicable to all primitives enabling OpenGL
rendering. Hence, a promising direction of future research
could be to enhance geometry processing methods work-
ing with other surface representations, like splines or point-
based geometry, by our approach.

Figure 4. The presented distance visualiza-
tion and error control can easily be inte-
grated into any mesh processing algorithm,
like freeform deformation based mesh mod-
eling. In addition to visualizing the deviation
from the initial state, deformation violating a
prescribed tolerance can also be prevented
efficiently.
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