
EUROGRAPHICS 2007 / D. Cohen-Or and P. Slavík
(Guest Editors)

Volume 26 (2007), Number 3

A Finite Element Method on Convex Polyhedra
Martin Wicke Mario Botsch Markus Gross

ETH Zurich

Abstract
We present a method for animating deformable objects using a novel finite element discretization on convex poly-
hedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth
interpolants within the elements. The mathematical properties of our basis functions guarantee convergence. Our
method is a natural extension to linear interpolants on tetrahedra: for tetrahedral elements, the methods are iden-
tical. For fast and robust computations, we use an elasticity model based on Cauchy strain and stiffness warping.
This more flexible discretization is particularly useful for simulations that involve topological changes, such as
cutting or fracture. Since splitting convex elements along a plane produces convex elements, remeshing or sub-
division schemes used in simulations based on tetrahedra are not necessary, leading to less elements after such
operations. We propose various operators for cutting the polyhedral discretization. Our method can handle arbi-
trary cut trajectories, and there is no limit on how often elements can be split.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling—Physically based modeling I.6.8 [Simulation and Modeling]: Types of Simulation—
Animation

1. Introduction

The finite element method (FEM) has become a central tool
in computer graphics, and it is widely used for physically-
based animation of deformations, fracture, fluids, smoke, or
other affects. Most methods discretize the computational do-
main by tetrahedral or hexahedral elements and linear or
trilinear interpolants, respectively. While such formulations
lead to simple and efficient computations, they share lim-
itations when it comes to topological changes during the
simulation. In cases of fracture or cutting, for instance, the
elements have to be split such that the discretization con-
forms to the new object boundary. This remeshing comes at
a cost and potentially leads to ill-shaped elements leaving the
computations unstable. Ill-shaped elements can be removed
from the discretization by inserting new simulation nodes
and remeshing the domain [She03]. Unfortunately, this is an
inherently non-local and costly operation.

Many researchers have proposed methods to alleviate the
aforementioned problems. A simple and efficient approach
consists of restricting the split to the faces between two ele-
ments. This works well for high resolution meshes and frac-
ture. Precise cutting, however, is not possible. Other algo-
rithms duplicate elements, but are still somewhat limited by
the initial mesh resolution [MBF04]. Meshless FEM, as sug-
gested recently, avoids the mesh entirely. The lack of con-
nectivity, however, requires additional processing and data
structures to identify topologically separated particles and

boundary conditions [PKA∗05, SOG06]. Furthermore, dy-
namic up- and downsampling has to be performed in the
vicinity of newly created boundaries, which tends to be non-
trivial.

The central contribution of this paper is a novel approach
to compute elastic deformations based on FE discretiza-
tion of the 3D domain into convex elements. Our method
is specifically useful for simulations involving topological
changes of the simulation domain, as experienced during
cutting or fracture. It significantly reduces computations
necessary for mesh maintenance. In addition, it allows for
an accurate representation of the cut or fracture surface. We
are able to remove sliver elements in an entirely local opera-
tion, making the simulation robust and numerically stable.

To accomplish the FE discretization, we employ a recently
introduced generalization of barycentric interpolants to con-
vex simplicial polytopes [JLW07] for the design of our ba-
sis functions. The mathematical properties of the functions,
such as positivity, partition of unity, and reproduction of lin-
ear polynomials, make them well suited for FEM. In particu-
lar, as the commonly used linear tetrahedral interpolants are
obtained as special case for tetrahedral elements, the method
is a seamless and natural extension of tetrahedral linear ele-
ments. Fig. 1 shows a simple example of the deformation of
a single convex element with 24 nodes.

Nonlinear interpolation functions lead to non-constant
strain within the elements, and require integration over the

c© The Eurographics Association and Blackwell Publishing 2007. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.



Wicke et al. / A Finite Element Method on Convex Polyhedra

Figure 1: An object consisting of a single element falls on a
slope. Due to the nonlinearity of the basis functions, nonlin-
ear deformations are possible even for a single element.

elements in order to obtain the elastic energy. Such meth-
ods have rarely been used in computer graphics [RGTC98].
We demonstrate that in situations involving topological re-
structuring of the computational domain, the advantages of
a flexible discretization easily outweigh the increased com-
plexity of per-element integration.

Our technique uses linearized Cauchy strain and stiffness
warping to avoid linearization artifacts for large deforma-
tions. We propose element splitting operations to accomplish
the local restructuring of the simulation domain after cut-
ting. A procedure for local sliver removal is also presented.
We will show that the resulting maintenance operations af-
ter topological changes are minimal. Our method allows for
progressive cuts through elements, arbitrary cut trajectories,
and does not impose a limit on the number of times an ele-
ment can be cut.

The remainder of this paper is structured as follows: Re-
lated work is discussed in more detail in Section 2. In Sec-
tion 3 we introduce the interpolants and discuss their proper-
ties in the context of FEM. In addition, we present the techni-
cal details of our elasticity simulation. Our method for sliver
removal is presented in Section 4. Section 5 describes the
operations necessary to implement cutting. Finally, we show
results and give performance figures in Section 6.

2. Related Work
Physically-based deformation of elastic solids was intro-
duced to the field of computer graphics by Terzopoulos et
al. [TPBF87]. Terzopoulos and Fleischer went on to simu-
late fracture in the form of tearing cloth [TF88]. The stan-
dard method to animate deformable objects has been FEM
(e. g. [KGC∗96, BNC96, OH99, DDCB01, GKS02, MG04]),
although for many applications, especially those with real-
time constraints, mass-spring systems have been used (the
recent survey [NMK∗06] gives a good overview). In both
cases, the simulation domain is typically discretized using
tetrahedral elements, even if nonlinear basis functions are
considered for accuracy [RGTC98].

The easiest way to incorporate topological changes into
such a system is to separate the material by removing springs

(for mass-spring systems), or splitting the object along el-
ement boundaries [MG04]. Using this simple approach,
newly created surfaces must conform to the initial discretiza-
tion of the mesh. While this is acceptable in applications
with hard real-time constraints, it is a severe limitation for
animation. Accurate cutting is also not possible.

O’Brien et al. [OH99, OBH02] apply continuous remesh-
ing to make the mesh discretization conform to the crack sur-
face. [BG00,BGTG03] subdivide tetrahedra locally in order
to accommodate the crack surface. This approach may lead
to ill-conditioned elements, which cannot be robustly used
in a FEM simulation. [SHGS06] try to avoid these problems
by snapping the simulation nodes to the cut trajectory. In any
case, the remeshing process is highly non-trivial, because ill-
conditioned sliver tetrahedra have to be avoided in order to
guarantee a stable simulation.

An alternative to remeshing is the virtual node algorithm
introduced by Molino et al. [MBF04]. Instead of actually
splitting simulation elements, the element that is to be split
is duplicated. The surface is embedded in both elements and
used for rendering and collision detection. The pitfalls of
remeshing can be entirely avoided using this scheme, how-
ever, each element can be split at most three times. Hence,
the original mesh resolution limits the resolution of fracture
patterns or cuts, requiring a high input resolution for realistic
results.

Meshless approaches for modeling elastic solids
[MKN∗04] do not require an underlying tetrahedral mesh.
Interactions between particles are evaluated using the mate-
rial distance between the particles. In the case of fracture,
the material distance within the object might not be equal to
the Euclidean distance any more, prompting recomputation
of the shape functions of nearby particles [PKA∗05]. This
process is local, however, coverage issues complicate the
fracturing process, making it necessary to adjust the particle
distribution near cracks. Steinemann et al. [SOG06] have
therefore reintroduced connectivity into a particle-based
simulation. A distance graph is used to approximate the
material distance. After cutting, this graph is modified to
reflect the new situation. Still, resampling is necessary to
maintain an adequate discretization near cracks.

Using nonlinear interpolation functions defined for con-
vex elements [Wac71, Wac75, Flo03, HF06], it is possible to
apply FEM directly on polygonal meshes (see [SM06] for
a recent survey on 2D methods using different basis func-
tions). One notable method in this class is the natural ele-
ment method [Suk98], using natural neighbor interpolation.
However, natural neighbor interpolation relies on Delaunay
triangulation of the domain, and thus offers no advantages in
settings with changing topology.

Warren [War96] generalized Wachspress coordinates to
3D. Recently, also Floater’s mean value coordinates [Flo03]
have been extended to 3D [JSW05, FKR05]. Ju et al.
[JLW07] show connections of several methods that can be

c© The Eurographics Association and Blackwell Publishing 2007.



Wicke et al. / A Finite Element Method on Convex Polyhedra

Figure 2: A cube sampled with convex elements deforms on
impact with the ground. The bottom-right picture shows the
sampling. An initially hexagonal element has been subdi-
vided with 30 random planes, resulting in 31 elements with
8 to 32 nodes.

used to generate barycentric coordinates on convex 3D poly-
hedra. In our formulation, we use Floater’s generalized con-
struction as described in [JLW07] to obtain interpolation
functions.

3. Elastic Deformation
Deformation of elastic material is governed by the equations
of continuum elasticity, which are discretized using the finite
element method. For an introduction to these topics, see for
example [Chu96, Bat95]. In the following, we consider an
object with material coordinates x = [x,y,z]T deformed by a
displacement field u(x) = [u(x),v(x),w(x)]T .

After an introduction of the necessary details of contin-
uum elasticity in Section 3.1, we propose interpolation func-
tions for arbitrary convex polyhedra in Section 3.2. Using
those, we discretize the continuous equations in order to de-
rive the finite element formulation (Section 3.3). In the re-
maining subsections 3.4 and 3.5 we give details on numeri-
cal integration and dynamic simulation in our framework.

3.1. Continuum Elasticity
The elastic energy density of a deformable body is defined
in terms of stress and strain within the object. For the latter,
we employ the linear Cauchy strain ε, which depends on the
Jacobian ∇u of the deformation field u:

ε =
1
2

(
∇u+∇uT

)
. (1)

The strain of the material in turn causes internal forces, rep-
resented by the 3×3 stress tensor σ. We assume a Hookean
material, i.e., a linear stress–strain relationship, which gives

σi j =
3

∑
k,l=1

Ci jkl εkl , i, j ∈ {1,2,3}, (2)

with a 4-tensor C containing the elastic coefficients of the
material. However, since ε and σ both are symmetric 3× 3
matrices, their independent coefficients can also be written
as 6D vectors. The strain, consisting of partial derivatives of
u, can then be written as

ε =
[

∂u
∂x

,
∂v
∂y

,
∂w
∂z

,
∂u
∂y

+
∂v
∂x

,
∂u
∂z

+
∂w
∂x

,
∂v
∂z

+
∂w
∂y

]T

.

(3)
Representing the stress by a 6D vector as well reduces the
constitutive relation (2) to a simple 6×6 matrix product

σ = Cε, (4)

where the constitutive matrix C only depends on the mate-
rial’s elasticity modulus and Poisson ratio, controlling stiff-
ness and volume preservation, respectively. In the following,
we will use the 6D vector notation.

With stress and strain defined at any material point x, the
total elastic energy U(u) can finally be computed as the in-
tegral of stress times strain over the object’s volume

U(u) =
1
2

Z
V

σ
T

ε =
1
2

Z
V

ε
T Cε. (5)

3.2. Interpolation Functions for Convex Polyhedra

In order to discretize the energy equation (5) the continuum
object is decomposed into a finite number of elements, and
each node i ∈ {1, . . . ,n} of this decomposition is associated
with a material position xi, a displacement value ui = u(xi),
and a scalar shape function φi(x). With this, the continuous
function u(x) can be approximated by

u(x) =
n

∑
i=1

ui φi(x) . (6)

While graphics applications typically employ tetrahedral or
hexahedral decomposition, our goal is to find an FEM for-
mulation for convex polyhedra. This requires interpolation
functions φi for convex polyhedra that are suitable for FEM
computations.

For 2D simulations, Wachspress coordinates [Wac71,
Wac75] have been used for finite element simulations on
convex polygons. To our best knowledge, no FEM simula-
tion method on 3D polyhedra has been proposed as of to-
day. Recently, Wachspress coordinates [War96, JSWM05]
and mean value coordinates [FKR05, JSW05, JLW07] have
been generalized to 3D — although not in the context of
FEM simulation. We propose to employ 3D mean value co-
ordinates as interpolating shape functions for FEM simula-
tions on convex polyhedra. Since these functions are usually
treated in the context of parameterization and texture inter-
polation, we will briefly review them below and discuss their
properties in the context of FEM.

Following the recent formulation of [JLW07], we derive
the mean value interpolation function φi(x) corresponding to
a particular vertex xi of a convex polyhedron with k vertices
{1, . . . ,k}. The generalized barycentric coordinates are only

c© The Eurographics Association and Blackwell Publishing 2007.



Wicke et al. / A Finite Element Method on Convex Polyhedra

(a) (b)

Figure 3: (a) Wireframe view of the element shown in Fig. 1.
(b) With triangulated faces.

defined on convex polyhedra with triangular faces. We there-
fore triangulate the faces of our elements in order to com-
pute the weight functions (see Section 3.2.1 for a discussion
of numerical issues). Fig. 3 shows an element and a possi-
ble triangulation of its surface. Triangulating non-triangular
faces is unproblematic compared to computing a tetrahedral-
ization of the element.

Note that if two convex polyhedra share a common face,
this face is necessarily planar, such that the exact nature of
the triangulation does not change the shape of the elements.
For the sake of consistency, we enforce this planarity con-
straint also for faces that lie on the boundary of the domain.
Once barycentric coordinates defined for arbitrary polygonal
faces become available, these can be used without changes
to our method. One step in this direction has been taken
by [Lan06].

Now consider the vertex xi and its edge-incident one-ring
neighbors enumerated as x j. The weight wi is defined as a
weighted sum of ratios of signed tetrahedra volumes

wi(x) = ∑
j

[
c j, j+1

Vi, j, j+1
+

ci, jV j−1, j+1, j

Vi, j−1, jVi, j, j+1

]
, (7)

where the volume Va,b,c = V (xa,xb,xc,x) for vertex indices
a, b, and c, and

ca,b =
‖(xa−x)× (xb−x)‖

6
arccos

[
(xa−x)T (xb−x)
‖xa−x‖‖xb−x‖

]
.

(8)
The mean value shape function φi is finally obtained by nor-
malizing the weight function wi:

φi(x) =
wi(x)

∑
k
l=1 wl(x)

. (9)

See Fig. 4 for a visualization of φi.

The functions φi are true barycentric coordinates for con-
vex polyhedra in the sense that they are positive inside the
polyhedron (if it is convex), and that each point x inside the
polyhedron can be written as a weighted sum of the vertices
xi with its coordinates as weights: x = ∑

k
i=1 φi(x)xi. This

property implies partition of unity and reproduction of lin-
ear functions.

(a) (b)

Figure 4: Basis functions for the highlighted nodes visual-
ized by hue interpolation on a plane through the element.

Thus, the functions φi fulfill all properties necessary for
convergence of our finite element approximation: They are
positive and reproduce linear functions. Their support is lim-
ited to incident elements, yielding a sparse stiffness ma-
trix. Continuity is C1 within elements, and since they re-
duce to linear barycentric coordinates on the faces of the
triangulation, the functions are C0 continuous across ele-
ment boundaries. Hence, the basis functions φi are in the
Sobolev space H1, and the finite elements approximation
converges [Bat95].

In order to evaluate the strain, we require the first order
partial derivatives of the shape functions φi. The derivatives
of (7) and (9) can be computed analytically, the correspond-
ing expressions are given in the appendix.

Note that in the case k = 4, the φi are linear, and equal
to the shape functions commonly used in tetrahedral ele-
ment discretizations. Hence, our method integrates seam-
lessly into FE methods using constant strain tetrahedra. Op-
timized code can be used for tetrahedral elements.

3.2.1. Numerical Issues
The shape functions defined as above are sums of volume
ratios, which are problematic to compute if the volumes in
(7) approach zero. This can occur in two situations: 1) if the
point x lies on the boundary of the element, or 2) if a surface
triangle has zero area.

The φi are not well defined on the boundary of the ele-
ment, however, they converge to barycentric coordinates on
the faces. Thus, this special case can easily be resolved. In
practice, we can choose where to evaluate the interpolant
during per element integration (see Section 3.4), and thus
avoid evaluating φi or ∇φi on the faces, except in the case of
sliver elements. We remove such slivers from the discretiza-
tion as described in Section 4.

Triangles with zero area make no net contribution to the
weights wi. Although not obvious from Equations (7) or (9),
this can be easily seen in the equivalent formulation as pre-
sented by [JSW05]. Since it was specifically designed to
be numerically robust, we also implemented the algorithm
given in [JSW05] using numerical differentiation to compute
the gradients of the basis functions. A comparison of these
two methods showed no significant differences in simulation
behavior.

c© The Eurographics Association and Blackwell Publishing 2007.



Wicke et al. / A Finite Element Method on Convex Polyhedra

3.3. Finite Element Discretization

With the shape functions defined in the last section, we
discretize the continuous energy (5) using the approxima-
tion (6). If we consider a particular element e with vertices
i = 1, . . . ,k, only the shape functions φ1, . . . ,φk of its vertices
are non-zero. Hence, within e the displacement interpolation
(6) is

u(x) =

 φ1(x) φk(x)
φ1(x) · · · φk(x)

φ1(x) φk(x)


︸ ︷︷ ︸

=:He(x)

 u1
...

uk

 ,

(10)
with a 3× 3k interpolation matrix He(x). Based on this, the
6D strain vector (3) inside this element can then be written
as

ε(x) =



∂

∂x 0 0
0 ∂

∂y 0

0 0 ∂

∂z
∂

∂y
∂

∂x 0

0 ∂

∂z
∂

∂y
∂

∂z 0 ∂

∂x


He(x) û =: Be(x) û. (11)

From the stress-strain relationship (4) we get the element’s
energy density similar to the continuous formulation (5):

Ue =
1
2

ûT
(Z

Ve

BT
e CBe

)
û =:

1
2

ûT Ke û. (12)

The element’s 3k× 3k stiffness matrix Ke is built by inte-
grating products of partial derivatives of the shape functions.
In contrast to tetrahedral meshes with linear basis functions,
these partial derivatives are not constant for arbitrary convex
elements. Hence, we perform numerical integration to com-
pute Ke, which will be discussed in Section 3.4. Note that
for linear elasticity, Ke is only computed in the rest state of
the material, i. e. in a state where all elements are guaranteed
to be convex (see also Section 6.1).

Once the elements’ stiffness matrices Ke are precom-
puted, the global 3n× 3n stiffness matrix K is assembled
[Bat95]. If we denote by U the vector of nodal displacements
[uT

1 , . . . ,uT
n ]T , the discrete version of the elastic energy (5)

becomes

U(u) =
1
2

UT KU. (13)

3.4. Integration

In order to compute the per element stiffness matrix Ke =R
Ve

BT
e CBe, we have to integrate over each element. For lin-

ear tetrahedral elements, these integrals are trivial to com-
pute since Be is constant over the element. For other sim-
ple element shapes, for example hexahedral elements, inte-
grals can be evaluated using Gauss quadrature. For irregu-
larly shaped elements, such quadrature rules are unwieldy.
Instead, we approximate the integrals using a low number

of sample points p heuristically placed throughout the ele-
ment. In our implementation, we use one integration sample
per vertex of the element, plus one sample for each face of
the triangulation of the element surface. We place the vertex
integration samples between the element centroid c and the
vertex xi, at pi = 0.8xi + 0.2c. The face samples are placed
similarly, at p f = 0.9c f +0.1c, where c f is the face centroid.
The exact location of these sample points does not have a
critical influence on the simulation result.

Using the same one-rings as in Section 3.2, we define the
volume fraction µi associated with the vertex i as

µe
i =

∑ j V
(
xi,x j,x j+1,c

)
3Ve

. (14)

Similarly, the volume fraction for the face sample of face f
with vertices j1, j2, and j3 is

κ
e
f =

V
(
x j1 ,x j2 ,x j3 ,c

)
Ve

. (15)

The element stiffness matrix Ke is then computed as

Ke = ∑
i

µe
i

2
BT

e (pi)CBe(pi)+∑
f

κ
e
f

2
BT

e
(
p f

)
CBe

(
p f

)
.

(16)
We have compared this method with Monte Carlo integration
with a high number of samples (around 10000) per element,
and have found no tangible difference in the behavior of the
simulation.

In the special case of a tetrahedral element, we use only
one integration point. Note that while computing the ele-
ment stiffness matrix for arbitrary elements by integration
is more complex than in the tetrahedral case, this has only
minor impact on the overall simulation complexity. For lin-
ear elasticity, the stiffness matrices of the elements are con-
stant throughout the simulation, unless the discretization is
changed. This can happen in simulations involving adaptive
refinement, or due to element splitting after fracture or cut-
ting. Since stiffness matrices are computed in a preprocess,
the computational complexity during the actual simulation
is mainly dependent on the total number of nodes (see also
Section 6).

3.5. Simulation Loop

The discrete energy (13) leads to the discrete equations of
motion

MÜ + DU̇ + KU = F, (17)

where M and D are the mass and damping matrices, respec-
tively, and F represents external forces [Bat95].

We employ mass lumping to obtain a diagonal mass ma-
trix M. Assuming constant density per element, the mass of
each element can be trivially computed from its volume. We
then take the volume fractions µe

i introduced in Section 3.4

c© The Eurographics Association and Blackwell Publishing 2007.



Wicke et al. / A Finite Element Method on Convex Polyhedra

(a) (b)

Figure 5: Sliver elements: (a) A tetrahedral sliver element.
Note that all faces can have reasonable areas, and no edge is
too short. (b) Allowing arbitrary convex polyhedra can lead
to more complex slivers.

to obtain a mass for each node by summation over all inci-
dent elements:

mi = ∑
e

µe
i Veρe, (18)

where ρe is the density of element e. Our experiments sug-
gest that the volume ratio µe

i is a good approximation of the
integral over the shape function φi within the element.

The linear elasticity model (3) is not invariant to rota-
tions. We use stiffness warping [MG04] in order to control
linearization artifacts. This method requires that we com-
pute per-element rotation matrices Re. The shape match-
ing method described by Müller et al. [MG04] only works
for tetrahedral elements. Therefore, we adopt the registra-
tion method presented by Horn [Hor87] instead, which has
the additional advantage of being stable even for degenerate
planar elements. Once the per-element rotations are known,
the global stiffness matrix K has to be reassembled using the
rotated element stiffness matrices RT

e KeRe.

Finally, implicit Euler integration is used to solve for the
dynamic behavior of the object. Since most real-world de-
formable objects are strongly damped, the numerical damp-
ing introduced by the integration scheme is acceptable. For
undamped simulations, symplectic integration can be used
[KWT∗06].

Note that even though the construction of the basis func-
tion is more complicated than the construction using con-
stant strain tetrahedra or other simple elements, the com-
plexity of the resulting equation system only depends on the
number of nodes. Hence, using arbitrary convex polytopes
instead of simpler element shapes does not result in a slower
simulation. On the contrary, after some topological changes
in the domain, tetrahedral remeshing is likely to have pro-
duced more elements and nodes than necessary for arbitrary
convex elements.

4. Sliver Removal

Contrary to tetrahedral meshes, it is unclear what criteria de-
termine the quality of a convex polyhedral element. How-
ever, our experiments suggest that bad elements are typ-
ically almost planar. These elements give rise to numeri-

(a) (b) (c)

Figure 6: Removing sliver elements: (a) A sliver element
and its neighbors. (b) New nodes are created at edge inter-
sections. (c) After tessellating the sliver plane, new faces are
connected to their neighboring elements. The faces in the
sliver plane are colored with the color of both elements they
are connected to. Note that the shape of the adjacent ele-
ments is not changed, only their connectivity is modified to
eliminate the sliver.

cal problems during simulation, since the gradients of ba-
sis functions inside such elements cannot be evaluated ro-
bustly. Following Shewchuck [She02a,She02b], we call ele-
ments that are (almost) planar due to degenerated edges nee-
dles, while planar elements without degenerated edges are
called slivers. Needles are easy to avoid: Whenever a node
is created (during initial meshing or remeshing due to topo-
logical changes), it is snapped to existing nodes if incident
edges would become too short. Most widely available mesh-
ing software, such as TetGen, can control the minimum edge
length, and checking for nearby nodes during cutting is rel-
atively easy.

Slivers are more problematic. One such element configu-
ration in the tetrahedral case is shown in Fig. 5 (a). For gen-
eral convex polyhedra, more complicated sliver elements are
also possible, see Fig. 5 (b) for an example.

Slivers are notoriously hard to avoid. Remeshing algo-
rithms based on constrained Delaunay tetrahedralization in-
sert more nodes into adjacent elements and remesh the
neighborhood of the sliver element. This process is costly,
and is not guaranteed to be local [She03].

Since we are not restricted to tetrahedral elements, we
can instead merge the sliver element with neighboring el-
ements. This process consists of the following steps (see
Fig. 6 for an illustration): We first compute a least-squares
plane through the element, which we call the sliver plane.
All vertices of the sliver element are projected onto the sliver
plane. If this creates nodes that are too close to each other,
they are merged. Then, all edges in the sliver plane are inter-
sected and new nodes are inserted at the intersection points.
Finally, the sliver plane is retessellated and each new face is
connected to the two elements that were attached to the old
faces it intersects. The sliver element can then be deleted.

Note that this procedure does not change the volume of
the adjacent elements. Therefore, no new degenerate ele-
ments are created by removing the sliver.

c© The Eurographics Association and Blackwell Publishing 2007.



Wicke et al. / A Finite Element Method on Convex Polyhedra

(a) (b)

Figure 7: (a) The bottom element is split along a plane.
New simulation nodes (red) are added where the cutting
plane intersects the original geometry of the element. (b)
New integration samples are created in all elements that
were changed by the split (shaded blue). Not all neighbor-
ing elements need to be updated.

If the elements were tetrahedral before the sliver was re-
moved, exactly one new node is created using this technique.
The neighboring elements have five nodes each after the
sliver is deleted. In more complex cases, more nodes might
be inserted.

Projecting the nodes of a sliver element onto the sliver
plane may lead to slightly non-convex elements in the neigh-
borhood. However, this is not a problem for our method,
since mean value coordinates, from which our basis func-
tions are derived, are well-behaved even for non-convex ele-
ments [JSW05].

5. Cutting

Changing the topology of the simulation mesh reveals the
strengths of our method. As our only requirement to the
mesh is that all elements must be convex, maintaining a
valid simulation mesh after cutting operations is easy. In this
section, we review the atomic operations necessary to cut
meshes consisting of convex elements. We first discuss the
case of elements that are split entirely by a plane, before
moving on to progressive cuts through elements.

5.1. Splitting Elements

Splitting a convex polytope along a plane results in two con-
vex polytopes. Thus, after planar element split operations,
no remeshing is necessary in order to maintain a valid dis-
cretization of the simulation domain. Wherever the split-
ting plane intersects existing edges, new simulation nodes
are created. We compute displacement samples for the new
nodes using our interpolant u, which is linear on the edges
of the discretization. During these edge splits, care has to
be taken not to create nodes too close to existing nodes to
avoid degenerate edges. In practice, nodes that would be
created too close to existing nodes are snapped to the ex-
isting geometry. For all elements that were changed in the
process, new integration samples are computed. In order to
avoid computing integration samples multiple times, reini-
tialization of element integration samples is deferred until
the end of the timestep. Fig. 7 illustrates the procedure. Note

(a) (b)

(c) (d)

Figure 8: (a) Two elements are cut with a polygonal cut
shape (blue). (b) All intersected elements are split along the
cutting plane. (c) The polygon edges are intersected with the
existing edges of the mesh, and new nodes are inserted at
intersections. Faces in the cutting plane are split to create
a consistent tessellation. (d) Nodes inside the cut shape are
duplicated, the material is separated along the cut.

that t-junctions might be created during splitting. This is not
a problem, since the only requirement to the discretization is
that all elements are convex.

5.2. Progressive Cuts
When progressive cuts are considered, elements are not nec-
essarily split entirely in a single timestep. Instead, we have
to deal with an arbitrary surface intersecting the element
[BGTG03, SHGS06]. We therefore describe how to cut the
simulation mesh with arbitrary planar polygons. Any given
cut surface can be tessellated and the simulation mesh is se-
quentially cut with each of the resulting polygons.

As our cut shape, consider a polygon with vertices
p1 . . .pk, lying in a cutting plane P. We first split all ele-
ments that intersect the cut shape along P, as described in
Section 5.1. Then, we insert simulation nodes at the polygon
points p1 . . .pk, and connect them with edges. The polygon
edges are intersected with edges in the simulation mesh and
all intersection points are added as new simulation nodes.
The faces in the cut plane are now split to accommodate the
new nodes and edges. We enforce that all generated faces
are convex. Finally, all simulation nodes inside the cut shape
can be duplicated, and their incident elements are separated
along the cutting plane. Fig. 8 illustrates the necessary steps.

If there are no simulation nodes inside the cut shape, the
cut cannot open. In such cases, we insert one additional sim-
ulation node at the centroid of the cut shape, and connect it
with edges to the polygon nodes at p1 . . .pk, thus creating a
pocket in the material.

Note that for non-tetrahedral elements, cuts through a sin-
gle element might not be planar. In these cases, the surface

c© The Eurographics Association and Blackwell Publishing 2007.



Wicke et al. / A Finite Element Method on Convex Polyhedra

Figure 9: A block of material is sliced. Very few additional
elements are created as tetrahedral subdivision is not nec-
essary. The bottom row shows the elements. Note that even
though many nodes are created to accurately represent the
cut surface, elements do not need to be split.

within the element has to be tessellated after its edges have
been intersected. The element is then sequentially cut with
all faces of the tessellation as described above. We approxi-
mate the surface in each element by the triangulation of the
intersection points on edges of the elements.

6. Results and Discussion

Table 1 gives simulation times for the scenes shown here, as
well as element and node counts. Timings were measured on
a Pentium 4, 3GHz, and do not include rendering time.

Fig. 1 shows a single element with 24 nodes that falls on
a slope and deforms on impact. Note that due to the nonlin-
earity of basis functions, even a single element can undergo
nonlinear deformations. Another example of elasticity using
convex polyhedra is shown in Fig. 2. The elements in this
example were created by repeatedly splitting a cube with
random planes. The elements in this example have 8 to 32
nodes.

Simple cuts are shown in Fig. 9. A cube consisting of 3×
3×3 hexagonal elements is sliced. During the first cut, three
elements are added. Note that contrary to an implementation
using tetrahedral elements only, elements do not have to be
subdivided in order to accommodate new vertices, leading
to fewer elements and nodes. Nevertheless, the cut surface is
represented accurately, and smooth, nonlinear deformations
are possible.

Fig. 10 shows more complicated cuts. Elements created
by cutting operations are regular elements and can be cut
again. We used TetGen to generate an initial tetrahedral
mesh. After all cuts are complete, 51% of the elements
are still tetrahedral, the elements with the highest number
of nodes has 27 nodes. Performing the same sequence of
cuts using a state of the art tetrahedral subdivision method
[SHGS06] results in more than 75000 nodes and more
than 300000 elements, even if the cuts are executed non-
progressively. The exact number of nodes and elements de-
pends on snapping thresholds.

Start End avg. time/
Fig. #Nodes #Elem #Nodes #Elem frame [s]
1 24 1 24 1 0.012
2 184 31 184 31 0.22
9 64 27 1214 60 0.8 (0.04)
10 24079 8278 46132 44118 6.08 (3.56)

Table 1: Node count, element count, and computation time.
The time in parenthesis is the computation time for the dy-
namic update not including recomputation of basis func-
tions.

Highly optimized code is available for tetrahedral FE sim-
ulation. On purely tetrahedral models, our implementation
of the above algorithm is slower than these methods. How-
ever, the theoretical complexity in these cases is the same. As
soon as topological changes are considered, the number of
elements and nodes in the discretization grows faster when
only tetrahedral elements are allowed.

6.1. Limitations

Our method is limited to linear elasticity. Nonlinear elas-
ticity would require evaluating the basis functions and their
gradients also for the deformed state of the simulation mesh.
This is possible in principle, but the elements may not be
convex in the deformed state. While our basis functions are
smooth even for non-convex elements (contrary to Wachs-
press coordinates), they lose the property of positivity. One
possible approach might be to subdivide the deformed el-
ements into convex parts in each time step. Irving et al.
[ITF06] treat problems arising for nonlinear strain in hex-
ahedral elements, however, their method is not directly ap-
plicable to arbitrary convex polyhedra.

In shell-like situations, strain concentrates at element
boundaries. This artifact can be observed in Fig. 9, see also
the accompanying video. Note that this limitation applies to
all finite element methods with only C0 continuity across el-
ement boundaries, including constant strain tetrahedra.

So far, the faces of elements have to be decomposed into
triangles in order to evaluate the basis functions. Although
we have not experienced numerical difficulties caused by
face triangulation, a formulation that does not require tri-
angular faces would of course be more elegant.

7. Conclusion and Future Work

We have presented a novel finite element method based on
discretization of the domain into convex elements. The basis
functions within these elements are derived from recently
introduced 3D mean value coordinates. These basis func-
tions fulfill all necessary criteria to prove convergence of our
method. In the case of tetrahedral elements, the functions are
linear, and constant strain tetrahedra emerge as a special case
of our approach.

c© The Eurographics Association and Blackwell Publishing 2007.



Wicke et al. / A Finite Element Method on Convex Polyhedra

Figure 10: Slicing the Stanford Bunny. The cut trajectories are accurately represented. We can cut extremely thin slices without
mesh restructuring — the simulation method is stable in these cases.

Our method is more flexible than a pure tetrahedron-based
approach. Splitting elements does not require remeshing, re-
ducing the number of elements and nodes created during cut-
ting operations, especially if consecutive cuts through the
same region are considered.

As future work, we plan to do a thorough numerical analy-
sis of the proposed approach, including comparisons regard-
ing accuracy. The effect of our integration heuristic on ac-
curacy and convergence needs to be examined. Meshing a
domain into a set of convex polyhedra, as opposed to tetra-
hedra, is also an open problem.

Acknowledgments

We would like to thank Bernd Bickel for his work on the
raytraced illustrations and Denis Steinemann for comparison
data. We are grateful to Christoph Schwab for the helpful
discussion. Martin Wicke is funded by the Swiss National
Commision for Technology and Innovation (CTI), project
no. 7560.1 ESPP-ES.

References
[Bat95] BATHE K.-J.: Finite Element Procedures. Prentice Hall,

1995.

[BG00] BIELSER D., GROSS M.: Interactive Simulation of Surgi-
cal Cuts. In Proceedings of Pacific Graphics’00 (2000), pp. 116–
125.

[BGTG03] BIELSER D., GLARDON P., TESCHNER M., GROSS

M.: A State Machine for Real-Time Cutting of Tetrahedral
Meshes. In Proceedings of Pacific Graphics’03 (2003), pp. 377–
386.

[BNC96] BRO-NIELSEN M., COTIN S.: Real-time Volumetric
Deformable Models for Surgery Simulation Using Finite Ele-
ments and Condensation. In Proceedings of Eurographics’96
(1996), pp. 57–66.

[Chu96] CHUNG T. J.: Applied Continuum Mechanics. Cam-
bridge University Press, New York, 1996.

[DDCB01] DEBUNNE G., DESBRUN M., CANI M.-P., BARR

A. H.: Dynamic Real-Time Deformations using Space and Time
Adaptive Sampling. In Proceedings of SIGGRAPH’01 (2001),
pp. 31–36.

[FKR05] FLOATER M. S., KOS G., REIMERS M.: Mean Value
Coordinates in 3D. Computer Aided Geometric Design 22
(2005), 623–631.

[Flo03] FLOATER M. S.: Mean Value Coordinates. Computer
Aided Geometric Design 20, 1 (2003), 19–27.

[GKS02] GRINSPUN E., KRYSL P., SCHRÖDER P.: CHARMS:
A Simple Framework for Adaptive Simulation. In Proceedings
of SIGGRAPH’02 (2002), pp. 281–290.

[HF06] HORMANN K., FLOATER M. S.: Mean Value Coordi-
nates for Arbitrary Planar Polygons. Transactions on Graphics
25, 4 (2006), 1424–1441.

[Hor87] HORN B. K. P.: Closed-Form Solution of Absolute Ori-
entation using Unit Quaternions. Journal of the Optical Society
of America 4 (1987), 629–642.

[ITF06] IRVING G., TERAN J., FEDKIW R.: Tetrahedral and
Hexahedral Invertible Finite Elements. Graphical Models 68, 2
(2006), 66–89.

[JLW07] JU T., LIEPA P., WARREN J.: A General Geometric
Construction of Coordinates in a Convex Simplicial Polytope.
Computer Aided Geometric Design (2007). preprint.

[JSW05] JU T., SCHAEFER S., WARREN J.: Mean Value Coor-
dinates for Closed Triangular Meshes. In Proceedings of SIG-
GRAPH’05 (2005), pp. 561–566.

c© The Eurographics Association and Blackwell Publishing 2007.



Wicke et al. / A Finite Element Method on Convex Polyhedra

[JSWM05] JU T., SCHAEFER S., WARREN J., M.DESBRUN:
Geometric Construction of Coordinates for Convex Polyhedra
using Polar Duals. In Proceedings of the Symp. on Geometry Pro-
cessing’05 (2005), pp. 181–186.

[KGC∗96] KOCH R. M., GROSS M. H., CARLS F. R., VON

BÜREN D. F., FRANKHAUER G., PARISH Y. I. H.: Simulat-
ing Facial Surgery Using Finite Element Models. In Proceedings
of SIGGRAPH’96 (1996), pp. 421–428.

[KWT∗06] KHAREVYCH L., WEIWEI, TONG Y., KANSO E.,
MARSDEN J. E., SCHRÖDER P., DESBRUN M.: Geometric,
Variational Integrators for Computer Animation. In Proceedings
of the Symp. on Computer Animation’06 (2006), pp. 43–51.

[Lan06] LANGER T.: Spherical Barycentric Coordinates. In
Proceedings of the Symp. on Geometry Processing’06 (2006),
pp. 81–88.

[MBF04] MOLINO N., BAO Z., FEDKIW R.: A Virtual Node Al-
gorithm for Changing Mesh Topology during Simulation. In Pro-
ceedings of SIGGRAPH’04 (2004), pp. 385–392.

[MG04] MÜLLER M., GROSS M.: Interactive Virtual Materials.
In Proceedings of Graphics Interface’04 (2004), pp. 239–246.

[MKN∗04] MÜLLER M., KEISER R., NEALEN A., PAULY M.,
GROSS M., ALEXA M.: Point-Based Animation of Elastic, Plas-
tic and Melting Objects. In Proceedings of the Symp. on Com-
puter Animation’04 (2004), pp. 141–151.

[NMK∗06] NEALEN A., MULLER M., KEISER R., BOXERMAN

E., CARLSON M.: Physically Based Deformable Models in
Computer Graphics. Computer Graphics Forum 25, 4 (2006),
809–836.

[OBH02] O’BRIEN J. F., BARGTEIL A. W., HODGINS J. K.:
Graphical Modeling and Animation of Ductile Fracture. In Pro-
ceedings of SIGGRAPH’02 (2002), pp. 291–294.

[OH99] O’BRIEN J. F., HODGINS J. K.: Graphical Model-
ing and Animation of Brittle Fracture. In Proceedings of SIG-
GRAPH’99 (1999), pp. 137–146.

[PKA∗05] PAULY M., KEISER R., ADAMS B., DUTR&#233;
P., GROSS M., GUIBAS L. J.: Meshless Animation of Fracturing
Solids. In Proceedings of SIGGRAPH’05 (2005), pp. 957–964.

[RGTC98] ROTH M., GROSS M., TURELLO S., CARLS F. R.:
A Bernstein-Bézier Based Approach to Soft Tissue Modeling. In
Proceedings of Eurographics’98 (1998), pp. 285–294.

[She02a] SHEWCHUCK J.: What Is a Good Linear Finite El-
ement? Interpolation, Conditioning, and Quality Measures. In
Proceedings of the 11th International Meshing Roundtable
(2002), pp. 115–126.

[She02b] SHEWCHUCK J.: What Is a Good Linear Finite Ele-
ment? Interpolation, Conditioning, Anisotropy, and Quality Mea-
sures. unpublished extended version, 2002.

[She03] SHEWCHUCK J.: Updating and Constructing Con-
strained Delaunay and Constrained Regular Triangulations by
Flips. In Proceedings of the 19th Annual Symposium on Com-
putational Geometry (2003), pp. 181–190.

[SHGS06] STEINEMANN D., HARDERS M., GROSS M.,
SZEKELY G.: Hybrid Cutting of Deformable Solids. In Proceed-
ings of the IEEE VR’06 (2006), pp. 35–42.

[SM06] SUKUMAR N., MALSCH E. A.: Recent Advances in the
Construction of Polygonal Finite Element Interpolants. Archives
of Computational Methods in Engineering 13, 1 (2006), 129–
163.

[SOG06] STEINEMANN D., OTADUY M. A., GROSS M.: Fast
Arbitrary Splitting of Deforming Objects. In Proceedings of the
Symp. on Computer Animation’06 (2006), pp. 63–72.

[Suk98] SUKUMAR N.: The Natural Element Method in Solid
Mechanics. PhD thesis, Northwestern University, Chicago, USA,
1998.

[TF88] TERZOPOULOS D., FLEISCHER K.: Modeling Inelastic
Deformation: Viscoelasticity, Plasticity, Fracture. In Proceedings
of SIGGRAPH’88 (1988), pp. 269–278.

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER

K.: Elastically Deformable Models. In Proceedings of SIG-
GRAPH’87 (1987), pp. 205–214.

[Wac71] WACHSPRESS E. L.: A Rational Basis for Function Ap-
proximation. In Lecture Notes in Mathematics (1971), vol. 228,
Springer, pp. 223–252.

[Wac75] WACHSPRESS E. L.: A Rational Finite Element Basis.
Academic Press, 1975.

[War96] WARREN J.: Barycentric Coordinates for Convex Poly-
topes. Advances in Computational Mathematics 6 (1996), 97–
108.

Appendix A: Derivatives of Shape Functions

Consider a convex polytope with vertices at positions xi, i =
1 . . .k. Recalling (9) from page 4, we obtain for the gradient
of the basis function φi

∇φi =
∂φi

∂x
=
∇wi ∑

k
l=1 wl −wi ∑

k
l=1∇wl(

∑
k
l=1 wl

)2 . (19)

With the one-ring vertices of vertex i enumerated as x j, the
gradient of the weight wi is

∇wi = ∑ j

[
∇c j, j+1Vi, j, j+1−c j, j+1∇Vi, j, j+1

V 2
i, j, j+1

+
(∇ci, jVj−1, j+1, j+ci, j∇Vj−1, j+1, j)Vi, j−1, jVi, j, j+1

V 2
i, j−1, jV

2
i, j, j+1

−
ci, jVj−1, j+1, j(Vi, j−1, j∇Vi, j, j+1+∇Vi, j−1, jVi, j, j+1)

V 2
i, j−1, jV

2
i, j, j+1

]
.

(20)
The gradient of a tetrahedron volume Va,b,c has the magni-
tude of one third the triangle area A(a,b,c) and points in the
direction of the triangle normal:

∇Va,b,c =
‖(xc−xa)× (xb−xa)‖

6
. (21)

We define di = x−xi and d̂i = di/‖di‖. The gradient of the
term ca,b is given by

∇ca,b = 1
6

[(
d̂a · d̂b

)(
d̂a‖db‖+ d̂b‖da‖

)
−da−db+

arccos(d̂a·d̂b)
‖d̂a×d̂b‖

[
(d̂a× d̂b)× (xb−xa)

]]
.

(22)

Note that since
arccos(d̂a·d̂b)
‖d̂a×d̂b‖

= α

sin α
and limx→0

x
sin x = 1, (22)

can be robustly evaluated in all cases.

c© The Eurographics Association and Blackwell Publishing 2007.


