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Abstract
We introduce and investigate several state-of-the-art shape deformation methods for their use in evolu-
tionary design optimization problems. Starting from classical free-form deformation (FFD) we broaden
our investigation to more flexible methods such as direct manipulation FFD and deformations based
on radial basis functions. We integrate the different methods into a framework for evolutionary design
optimization and apply them in a passenger car optimization scenario improving the drag of a simplified
Honda Civic model. We evaluate the aerodynamic performance of different design variations utilizing
computational fluid dynamics simulations. Based on this scenario we analyze and compare the strengths
and weaknesses of the individual methods.
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1. Introduction
Fully automatic simulation-based design optimization has become a crucial part of the product devel-
opment cycle in a wide variety of domains such as automobile and aerospace engineering, electronics,
or naval architecture. Its primary goal is the performance improvement of certain physical properties of
real world objects. The success and efficiency of such an optimization process heavily depends on the
carefully tuned interplay of three major components: the chosen optimization algorithm, the method to
create design variations, and the design evaluation method.

While classical gradient-based methods have been extensively used for design optimization, the ap-
plication of evolutionary algorithms becomes more and more feasible due to increasing computing power
and availability of parallel computing environments. Evolutionary optimization techniques based on
principles of biological evolution have several compelling advantages: the ability to find global optima,
the potential to generate new and unexpected designs, robustness with regards to noise in the input data,
the ability to deal with non-smooth or even discontinuous fitness functions, as well as the possibility to
incorporate multiple objective fitness functions at once.

As for creating variations of an initial design, shape deformation methods originating from computer
graphics and geometric modeling have been successfully integrated into a design optimization framework
using evolutionary algorithms. In particular, the combination of free-form deformation (FFD) and evo-
lution strategies (ES) has been proven to be a powerful tool for improving the aerodynamic performance
of complex geometric designs. Within such an optimization framework the deformation method allows
to manipulate a given shape by adjusting a set of control points that constitute the design parameters
determined by the selected evolutionary algorithm.

As for design evaluation, typical choices include computational fluid dynamics (CFD) simulations
based on finite volume methods for aerodynamic performance calculation, as well as finite element
methods (FEM) for structural mechanics simulations. However, in order to produce meaningful results
the fitness function is typically enhanced to include additional measures and constraints, e.g., to maintain
geometric characteristics like minimum heights, curvatures, or distances.

The remainder of this paper is organized as follows: We begin with an investigation of the funda-
mental requirements a deformation method should satisfy in order to be suitable for common design
optimization scenarios (Section 2). Based on these requirements we introduce several state-of-the-art
shape deformation methods including FFD, direct manipulation FFD, and deformations based on radial
basis functions. A generic evolutionary design optimization process as well as basic concepts of evolu-
tion strategies are introduced in Section 3. We apply this optimization process in a passenger car design
optimization scenario utilizing CFD simulations for aerodynamic performance calculation in Section 4,
which also serves us as a starting point for comparing the different deformation methods.
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Figure 1: Deformation of a simplified Honda Civic. The modelM is warped by the space deformation
function d. Each point p ∈M is transformed to updated locations p′ ∈M′, where p′ = p + d(p).

2. Shape Deformation Methods
In this section we introduce several state-of-the-art shape deformation methods for their use in evolution-
ary design optimization. Before describing the individual techniques in detail, we briefly review related
work, motivate our selection of methods, and introduce the concept of a space deformation. Shape
deformation methods have been an area of continuous and extensive research within the fields of com-
puter graphics and geometric modeling. Consequently, a wide variety of techniques has been proposed
during recent years. Since providing an overview of the complete field is beyond the scope of this work
we refer to existing introductions and surveys. Detailed references for the individual methods covered
in this work are provided in the corresponding sections. A general introduction to shape deformation
techniques is provided by [5]. Surveys on space deformation techniques have been presented in [1] and
[8]. While the former concentrates on building a mathematical formalism for the different methods, the
latter is focused on the interactive manipulation of a model by a designer. In contrast, a survey of shape
parametrization techniques in the context of design optimization is given in [25]. Linear variational
surface deformation methods have been investigated in detail in [6].

The selection of deformation methods considered in our comparison is highly driven by our application
domain—design optimization. In this context, one may formulate several requirements a deformation
technique should satisfy. A fundamental one is the ability to transparently deal with different object
representations such as triangular or quadrilateral surface meshes, volumetric meshes, polygon soups, as
well as point-based representations. On the one hand, this requirement stems from the desire to be able to
optimize a wide variety of designs. On the other hand, it is particularly important when the evaluation
of the objective function involves computationally expensive computational fluid dynamics (CFD) or
finite element method (FEM) simulations. In this case the volumetric grids required for the simulation
typically are very time-consuming to generate. For highly complex geometries this process might even
involve manual interaction by the engineer, which is prohibitive for a fully automatic design optimization
process. In order to avoid the costly mesh generation process for each design variation created during
optimization, one typically aims at deforming an initial simulation grid alongside with the object. A
second requirement is the ability to robustly deal with defects in the input geometry. Especially models
originating from an automatic conversion process of a CAD system may contain degeneracies such as
badly shaped triangles, non-manifold meshes, or disconnected components.

A type of deformation methods that naturally fulfills the above requirements are so-called space
deformations. The fundamental idea behind these methods is to deform the embedding space around an
object, thereby deforming the object implicitly. From a mathematical point of view a space deformation
is a function d : IR3 → IR3 that maps each point in space to a certain displacement. Given a deformation
function, a modelM can be transformed to a deformed modelM′ by computing updated point locations
p′ = p + d(p) for each original point p ∈M. The basic procedure is illustrated in Figure 1. Naturally,
space deformation techniques differ in how the function d is constructed. Since the deformations applied
during optimization are typically relatively small, we focus on linear methods, i.e., techniques that
require solving a linear system in one form or another. A common denominator for all methods is the
use of some form of control structure, be it a volumetric lattice, a triangular surface mesh, or a set
of points in space. The deformation function is typically constructed by blending the elements of the
control structure in conjunction with some form of basis functions, as we will show in detail for the
individual methods in the sections that follow.
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Figure 2: Free-form deformation applied to a simplified Honda Civic. The original modelM is embedded
in a regular lattice of 4 × 4 × 4 control points (golden). After moving the selected control points (red)
the updated object point locations p′ are computed by evaluating the FFD space deformation function
dffd for the local coordinates u of the point p.

2.1. Free-form Deformation
Free-form deformation is a well-established deformation technique that has been widely used in both
academia and industry. Since it also has been employed within shape optimization [17, 26] and evolution-
ary design optimization [20, 19, 18] it forms the basis for our comparison. Before describing the method
in detail we first review important variants of the technique. Free-form deformations using Bézier basis
functions have been originally introduced in [28]. Local deformations using B-spline basis functions have
been introduced in [10]. An extension to more flexible control lattices, in particular cylindrical ones,
has been proposed in [7]. This approach was later extended to control lattices of arbitrary topology in
[16]. Free-form deformations using non-uniform rational B-splines are described in [15]. A highly flexible
but computationally involved variant of FFD based on a 3D-Delaunay triangulation, its Voronoi dual,
and Sibson coordinates [29] has been presented in [21]. A variant of FFD using T-splines [27] as basis
functions—thereby allowing for local refinement of the control lattice—has been presented in [30].

The basic idea of FFD is based upon embedding the object to be deformed in a parallelepiped
lattice and deforming it using a trivariate tensor-product Bézier or B-spline function. The deformation
procedure to perform free-form deformation of an object can be divided into several steps. First, a
control lattice has to be generated and adapted to the deformation scenario at hand. Then the local
coordinates with respect to the control lattice have to be computed for each point to be deformed. After
this embedding each object point p ∈ M can be expressed as a linear combination of lattice control
points cijk and basis functions Ni:

p =

l∑
i=0

m∑
j=0

n∑
k=0

cijkNi(u1)Nj(u2)Nk(u3), (1)

where (u1, u2, u3) are the local coordinates of p with respect to the control lattice, and l,m, n are the
numbers of control points in each direction. For the sake of simplicity we define

u := (u1, u2, u3), Np(u) := Ni(u1)Nj(u2)Nk(u3), and δcp := δcijk = c′ijk − cijk,

where c′ijk denotes an updated control point location. We can then define the FFD space deformation
function as

dffd(u) =
∑
p

δcpNp(u). (2)

Finally, the deformation is performed by moving the control points and computing the updated object
point locations. An example deformation using FFD is illustrated in Figure 2.

In our implementation of FFD we use cubic B-splines with a uniform knot vector. While this type
of basis functions requires a numerical technique such as a Newton method [23] for computing the local
coordinates, the important advantage is the capability to perform deformations with local support.
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Figure 3: Direct manipulation FFD of a simplified Honda Civic. A single object point pdm (marked
red) is selected from the vertices of the modelM. After specifying a displacement for pdm the system
computes control point displacements so that p′dm is satisfied and the updated object point locations p′

are computed.

2.2. Direct Manipulation Free-form Deformation (DMFFD)
In an interactive modeling system the manipulation of control points to perform a deformation becomes
a tedious task—especially when using a complex control lattice with a large the number of control points.
A more flexible and intuitive interface for controlling a deformation is offered by direct manipulation
approaches, which have been introduced for FFD in [12]. Instead of moving control points, the user
directly moves the object points. The modeling system then computes control point displacements so
that the new object point positions are matched as precise as possible. An example deformation of a
Civic model using direct manipulation is shown in Figure 3.

Direct manipulation interfaces are not only beneficial within an interactive modeling scenario, they
can also be used effectively within evolutionary design optimization, as has been shown for direct manip-
ulation FFD in [19]. Due to the more direct influence of the parameters determined during optimization
on the design, using such an interface can result in a drastically faster convergence of the optimization.
In the context of evolutionary optimization this aspect is also referred to as strong causality [24]. In
contrast to classical FFD, the ability to choose an arbitrary object point for optimization offers a higher
degree of flexibility. Furthermore—due to the automatic computation of control point displacements
—this approach also reduces the need to pre-deform the control lattice to a certain degree.

Within a direct manipulation interface the user—be it an engineer or an optimization algorithm—
prescribes a set of displacement constraints, i.e., the deformation function has to attain certain values
d(ui) = d̄i for the constraints {p1, . . . ,pm}. The control point displacements δc satisfying the
prescribed displacements can be computed by solving the linear system

N1(u1) . . . Nn(u1)
...

. . .
...

N1(um) . . . Nn(um)




δcT1
...

δcTn

 =


d̄T

1

...

d̄T
m

 . (3)

Since the matrix in (3) is singular, the system can be solved using the pseudo-inverse [12, 9]. However,
solving for δc using the pseudo-inverse has its drawbacks. When the system is under-determined, a least-
norm solution is found, i.e., the amount of movement of the control points ‖δc‖ is minimized. When
the system is overdetermined, a least-squares solution is found, i.e., the error in satisfying the specified
constraints is minimized. This means that depending on the resolution of the control lattice the system
might not be able to satisfy the constraints specified by the user in an exact manner. In both cases, the
solution does not necessarily result in a physically plausible deformation.
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Figure 4: Deformation of a simplified Honda Civic using a handle-based direct manipulation interface
for RBFs. The vertices of the modelM are classified into three distinct sets: Handle vertices (H, golden)
can be directly displaced, fixed vertices (F , grey) are kept in place, and deformable vertices (D, blue)
are updated according to the deformation method.

2.3. Deformations Based on Radial Basis Functions
A space deformation technique based on radial basis functions (RBFs) has been introduced in [4]. This
method improves upon FFD and DMFFD in two significant aspects: First, due to its point-based nature,
introducing additional degrees of freedom in regions of interest is highly flexible, without the need to
maintain a complicated control structure. Second, the deformation function can be constructed in such a
way that it directly minimizes physically inspired energies—resulting in a smooth and physically plausible
deformation. Earlier instances of RBF deformations [3] lack this crucial property. A conceptually similar
approach that enforces additional properties on the deformation has been introduced by [14]. An example
deformation using RBFs as well as an explanation of our handle-based interface is given in Figure 4.

The RBF deformation technique is motivated by treating space deformation as an abstract inter-
polation problem: Given a set of displacements d̄i at positions pi, the goal is to smoothly interpolate
displacements through space. It is well-known from the field of scattered data interpolation and approxi-
mation that RBFs are highly suitable for solving this type of problem [31]. Within the RBF deformation
approach the space deformation function is constructed as a linear combination of radially symmetric
kernels ϕj(p) = ϕ(‖cj − p‖), located at centers cj ∈ IR3 and weighted by wj ∈ IR3:

drbf(p) =

m∑
j=1

wjϕj(p) + π(p), (4)

where π(p) is a polynomial of low degree used to guarantee polynomial precision. The choice of the kernel
function ϕ : IR→ IR has a significant influence on the quality of the deformation. In our implementation
we choose ϕ(r) = r3, which results in a tri-harmonic deformation function, i.e., ∆3d = 0, where ∆ is
the Laplace operator. Therefore, the deformation function d minimizes a fairness energy [4, 5]:∫

IR3

∥∥∥∥∂3d

∂x3

∥∥∥∥2

+

∥∥∥∥ ∂3d

∂x2∂y

∥∥∥∥2

+ . . .+

∥∥∥∥∂3d

∂z3

∥∥∥∥2

dV.

A second important aspect of RBF deformations is the kernel placement. By directly placing kernels
on all handle and fixed vertices we can easily implement a handle-based direct manipulation interface
satisfying all constraints specified by the user easily and exactly. If required, the performance of this
approach can be drastically improved by using only a reduced set of constraints, namely those that are
close to the deformable region. Finally, in order to compute the RBF deformation drbf the basis function
weights W = (w1, . . . ,wm)T ∈ IRm×3 and polynomial coefficients Q = (q1, . . . ,q4) ∈ IR4×3 have to be
computed by solving the dense symmetric linear system Φ Π

ΠT 0

 W

Q

 =

 D̄

0

 , (5)

where Φ ∈ IRm×m with Φij = ϕj(pi), Π ∈ IRm×4 with Πij = πj(pi), D̄ = (d̄1, . . . , d̄m)T ∈ IRm×3, and
{π1, . . . , π4} being a basis of the space of trivariate linear polynomials Π.
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Figure 5: Overview about a generic evolutionary design optimization process.

3. Evolutionary Design Optimization
Evolutionary algorithms employ principles of biological evolution such as reproduction and mutation for
solving global optimization problems in a stochastical manner. Widely used techniques include genetic
algorithms, genetic programming, evolutionary programming, and evolution strategies. The general
approach behind these techniques is to successively improve the fitness of a starting population by
adapting its parameters. On a general level, evolutionary algorithms have several advantages, such as
the ability to find global optima, the capability to generate novel and unexpected designs, robustness to
noise and uncertainty, as well as the ability to deal with non-smooth, discontinuous, and multi-objective
fitness functions.

An overview about a generic evolutionary design optimization process is illustrated in Figure 5. The
initial design is encoded into a parent chromosome. A set of offspring chromosomes is created by means
of reproduction and mutation. By mapping the offspring’s genotype to its phenotype a set of design
variations is created. The new designs are evaluated with regards to a specific fitness function. The
most successful offspring are selected to be the parents of the next generation and the evolution cycle
starts anew. This process is repeated until a desired fitness value is reached, the optimization converges,
or a maximum number of generations is reached.

Evolution strategies (ES) are a prominent class of evolutionary algorithms that can be employed to
solve a wide variety of optimization problems. Potential solutions are typically represented using vectors
of real numbers. After copying the parent chromosome for reproduction the offspring chromosomes are
mutated by adding a normally distributed random vector with zero mean. In comparison to other evo-
lutionary algorithms ES have two significant advantages: First, the strategy parameters can be adapted
during optimization (self-adaptation)—leading to faster convergence. Second, due to its simple vector-
based encoding, incorporating constraints on the parameters is much simpler than in other methods. A
comprehensive introduction to evolution strategies and its variants is given in [2].

A state-of-the-art variant of ES that provides high convergence rates and is able to deal with small
population sizes is the covariance matrix adaptation evolution strategy (CMA-ES) [11]. This property
is particularly important when using a computationally expensive fitness functions such as large-scale
CFD or FEM simulations. The characteristics that enable CMA-ES to provide fast convergence on small
populations are utilization of one source for object and strategy parameter variation, cumulative step
size adaptation, and adaptation of the full covariance matrix for adjusting the random distribution of
candidate solutions towards previously successful ones, as illustrated schematically in Figure 6.

Figure 6: Incremental adaptation of the random distribution of candidate solutions in CMA-ES.
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Figure 7: Overview about the evolutionary design optimization process.

4. Application: Passenger Car Design Optimization
We apply the different deformation methods in a passenger car design optimization scenario improving
the aerodynamic performance of a simplified Honda Civic. This scenario allows us to illustrate and
compare the individual strengths and weaknesses of the different deformation methods. The setup of
our evolutionary design optimization loop is illustrated in Figure 7. We use the CMA-ES provided by
the Shark machine learning library [13] and employ a (2, 15)-strategy, i.e., two parents and 15 offspring
individuals are considered. The selection is only performed on the offspring individuals. We encode
the design using n = 23 parameters. The feasible range of each parameter was constrained in order to
prevent the design to become too flat or too far stretched out.

4.1. Deformation Setups
The different deformation methods were set up in order to deform the back part of the Civic model.
In case of FFD a control grid was generated and pre-deformed to match the shape of the car. Several
control point groups were defined to be deformed according to the same parameter. Certain control points
on the boundary of the grid have been kept fixed in order to prevent discontinuities in the boundary
region. The same control grid was used in DMFFD. However, instead of using individual control point
groups all non-constrained control points were allowed to move in order to satisfy the prescribed object
point displacements. The object points that were displaced were chosen to approximately reflect the
FFD control point groups. Similar to DMFFD, a set of 20 handle regions was selected for the RBF
deformation method. The initial setups of the different deformation methods are shown in Figure 8.
The number of vertices being deformed was about 54k for all deformation methods.

4.2. Genotype-Phenotype Mapping
The genotype of an offspring chromosome is mapped to its phenotype by establishing a correspondence
between each component of the chromosome and a displacement into one spatial direction. Depending
on the deformation method a given control point group (FFD), group of object points (DMFFD), or a
handle region (RBF) is displaced by the parameter. In case of RBFs, e.g., the first parameter corresponds
to the vertical displacement of the top roof handle region.

Figure 8: Initial setups of the different deformation methods: FFD, DMFFD, RBFs.
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Figure 9: Progression of best solution fitness (left) and step size (right) during optimization.

4.3. Fitness Function Evaluation
We evaluate the individual designs based on a fitness function f : IRn → IR, combining two different
performance values: f(x) = w1v1 + w2v2, where v1 is the aerodynamic drag as computed by the CFD
simulation and v2 is an additional volume weight to prevent the optimization from producing overly
flat shapes. The aerodynamic drag v1 is computed by solving the incompressible laminar Navier-Stokes
equations using the SIMPLE algorithm as provided by the OpenFOAM C++ libraries [22]. The simulation
mesh contained 28033 points, 24576 cells, and a total of 77056 faces. For each of the 15 offspring
individuals the CFD simulation was run in parallel on 4 processor cores using OpenMPI in a cluster
environment with systems containing two 2.4GHz Quad Core Xeon processors with 24GB RAM. The
volume weight was computed by v2 = 1/ ‖pmax − pmin‖, where pmax and pmin are the maximum and
minimum points of the bounding box of deformable object points. To increase the impact of the volume
weight in a reasonable manner we chose w1 = 1 and w2 = 50 as weights.

4.4. Results
The progression of the best solution fitness and of the step size is shown in Figure 9. For each of the
deformation methods the optimization has been run for 100 generations. Examples of the designs with
the best fitness values are shown for each deformation method in Figure 10. We note that the resulting
deformations of the simplified car are purely artificial and have no practically relevant background. The
overall run time was approximately two weeks for each method. As can be seen from Figure 9 (left), both
DMFFD and RBF yield a better solution fitness than FFD. However, as becomes clear from Figure 9
(right), the step size of FFD is not as close to convergence as for the other methods, which might be
an explanation for the higher fitness value. However, the step sizes of all optimizations did not fully
converge within the number of iterations performed, which is mainly due to the initial step size being
too small—a common problem when dealing with an unknown objective function.

Figure 10: Best designs obtained with the different deformation methods: FFD, DMFFD, RBFs.
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5. Conclusion & Future Work
From our application scenario we can draw two major conclusions: First, we can affirm that in contrast
to lattice-based free-form deformation methods radial basis functions are significantly easier and flexible
to set up while providing equivalent or better results. The manual adaptation of the control lattice to
the shape of the model took a significant amount of time, while selecting the handle regions for the
RBF method was rather straightforward. Our second conclusion is that the slightly better results of
both methods directly manipulating object points seems to confirm the importance of a strong coupling
between the optimization parameter and resulting phenotype within evolutionary optimization.

In a future work we intend to extend our comparison in several ways. First, additional methods
such as cage-based deformations should be included. Second, a unified handle-based direct manipulation
interface should be used for all methods in order to increase comparability. Third, additional synthetic
benchmarks regarding computational performance, numerical robustness, quality and smoothness of the
deformation, precision of constraint satisfaction, and adaptive refinement should be performed and an-
alyzed. Fourth, depending on the desired behavior for the RBF deformation different choices of basis
functions should be investigated. Finally we note that even though the range of parameters in the opti-
mization was heavily constrained and the change of volume was taken into account for fitness evaluation
the resulting optimized shapes do not directly provide design alternatives ready for production. We
therefore feel that additional constraints yielding more meaningful results should be directly integrated
into the deformation.
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