
Real-Time Hand Tracking with a Color Glove for
the Actuation of Anthropomorphic Robot Hands

Matthias Schröder1, Christof Elbrechter2, Jonathan Maycock2, Robert Haschke2, Mario Botsch1, Helge Ritter2
1Computer Graphics & Geometry Processing Group, 2Neuroinformatics Group,

Bielefeld University, Germany

Abstract—We extend a recent low cost real-time method
of hand tracking and pose estimation in order to control an
anthropomorphic robot hand. The approach is data-driven
and based on matching the current image of a color-gloved
hand with the best fitting image in a database to retrieve the
posture. Then, using depth information from a Kinect camera
and a color-sensitive iterative closest point-to-triangle algorithm
we can very accurately estimate the absolute position and
orientation of the hand. The effectiveness of the approach is
demonstrated in an application in which we actively control a
20 DOF anthropomorphic robot hand in a manual interaction
grasping task.

I. INTRODUCTION

Our goal was to create a low cost real-time hand track-
ing and pose estimation system to control anthropomorphic
robotic hands. Our system allows for the fast generation of
real hand posture data that can be used in, for example,
teaching by demonstration scenarios or in the direct control
of anthropomorphic robotic hands.

Most existing methods that track and estimate the posture
of the hand are either too slow to be used in interactive
real-time applications or too bulky and expensive. We use
a data-driven approach in which a color glove is detected
and using a nearest neighbor search in an image database
the closest matching image and corresponding posture and
coarse rotation are retrieved. Our approach, following that of
Wang and Popović [1], is a low cost real-time system that
can provide accurate hand posture and position estimation.
A simplification of their algorithm along with the addition of
a Kinect [2] camera distinguishes both approaches. Whereas
Wang and Popović’s approach was concerned with producing
accurate hand postures, our primary focus is on accurately
estimating the pose (position and orientation) of the hand. In
order to perform robot actuation in tasks such as grasping,
controlling the pose of the hand takes on greater importance
than having an accurate posture, especially when using, as
we are, compliant robot hands. The Kinect camera provides
a 3D point cloud, which we use to initially place the hand
and then optimize this position using an Iterative Closest
Point-to-Triangle (ICP-T) algorithm.

II. RELATED WORK

Hand tracking and especially hand posture estimation is
a difficult problem due to the complexity of the hand itself,
which has, excluding position and orientation, 27 degrees of
freedom [3]. This has resulted in many researchers turning

Fig. 1. The color glove is used to facilitate hand posture estimation. The
resulting posture and pose are used to control an anthropomorphic robot
hand in real-time.

to either vision systems that require markers to be placed on
the hands or data-gloves [4].

Optical tracking systems that employ markers, such as
the VICON system, are able to capture highly accurate
kinematic movement data of the hand [4], [5]. However,
these approaches can suffer from occlusions of one or
more markers, which can occur especially when grasping
and manipulating objects, and have the disadvantage that
usually an expensive and large optical system is required.
An alternative is to use data-gloves that measure joint angles
directly and this method was extensively used to control
robot hands in the past [6], [7], [8]. However, data-gloves
with embedded sensors can be quite bulky to wear and thus
impede natural movements. Furthermore, they generally do
not provide position and orientation information, and the
mapping of raw sensor values to joint angles requires non-
trivial calibration procedures [9].

Bare hand tracking is desirable for certain applications,
and recently existing model-based approaches that hereto-
fore had proved too computationally expensive for real-time
applications [10] are now becoming feasible. Oikonomidis et
al. have introduced two such approaches, one using a multi-
camera setup [11] and the other using the Kinect camera [12].
While these are very promising directions, they suffer from
the high computational complexity that is associated with
model-based approaches and therefore had to be optimized
to run on a GPU. The Kinect camera was used for hand and
finger detection in [13], where several hand gestures were
recognized to facilitate real-time interaction in a graphical

user interface application. In our work, we provide a more
complete estimate of the full kinematic state of the user’s
hand.

As a compromise between approaches based on markers
or data gloves and bare-hand tracking approaches, Wang and
Popović [1] devised a method for real-time hand tracking and
posture estimation using a color glove. A camera captures
images of the glove and after segmentation and normalization
the closest matching image in a large database, along with
its unique posture, is found. A database of synthetically
generated images is used for directly matching the detected
features instead of performing a complex search in the hand
configuration space. This data-driven approach simplifies the
hand tracking problem considerably and is able to provide
good posture and orientation information. Use of a color
glove improves detection, feature extraction and speed over
approaches that use bare hands. In [14] Wang et al. adapted
their method to facilitate markerless 6D hand pose estimation
using a dual camera setup in a CAD application scenario. To
cope with the drawbacks of using only images of bare hand
silhouettes instead of color images, several restrictions to the
user’s freedom of movement had to be introduced in this
work. While these restrictions were acceptable in a CAD
context, they are not in our case. We use the color glove-
based work by Wang and Popović as the foundation of our
hand tracking approach, however we have made a number
of simplifications to their algorithm and have introduced a
Kinect camera in order to be able to much more precisely
control the absolute position and orientation of the hand in
3D space. This is crucial if robust control of anthropomorphic
robot hands is to be achieved.

The task of hand tracking for robot control was previously
dealt with in [15], where Do et al. employed a data-driven
approach for grasp recognition and hand pose estimation
and mapped the estimation results to a humanoid robot. In
their method [16] features extracted from bare hand images
are matched in a synthetically generated database to obtain
the posture and orientation of the hand. This represents a
discriminative hand pose estimation approach, whereas our
approach combines discriminative and generative estimation
by fitting a virtual hand model to the Kinect point cloud after
obtaining the initial posture estimate from a database, making
use of the glove’s unique color pattern in both estimation
steps.

III. HAND TRACKING METHOD

The color glove was designed by Wang and Popović with
a pattern of 20 patches in 10 distinguishable colors (see
Fig. 1). We make use of its distinctive pattern to efficiently
find the current image’s closest match in the database and
thus retrieve the hand posture and a coarse estimation of the
rotation of the hand. Aligning the color image with the depth
values provided by the Kinect camera allows us to accurately
estimate the global position and orientation of the hand.
Combining the posture (joint angles) and the pose (position

and orientation) allows us to control an anthropomorphic
robot hand.

Our approach relies on a database populated with images
of a virtual color glove along with their associated posture
and rotation information. The depth information from the
Kinect camera is currently only used to optimize the pose of
the hand and therefore is not contained in the database. The
first step was to capture natural realistic postures performed
by one of the authors and then to map these onto a kinematic
hand model. The model used has 22 joint angles, specifically
16 flexion angles and 6 abduction angles for each of the
finger bases and the wrist joint [4]. This simplified hand
model matches the kinematics of the shadow robot hand
well and makes the task of mapping joint angles to the robot
easier. Ground truth data was captured using a Vicon motion
tracking system [17] to track reflective markers placed on
a human hand as it performed various movements. After
converting the raw positional Vicon data into joint angles, we
sub-sampled the postures using a low-dispersion sampling
method [1] and constructed several task-specific posture
databases (see Sec. IV), varying the number and type of
postures contained within them.

Each database contains a number of posture entries. The
joint angles for each posture were used to animate a virtual
hand model textured with the glove’s color pattern. The hand
model was then rendered from multiple camera views and
each database posture entry was indexed by these different
views. The camera positions were produced by uniformly
sampling a virtual sphere surrounding the hand model, which
was accomplished by performing a uniform subdivision of
an icosahedron to approximate the surrounding sphere and
placing the cameras at its vertices. At each position, the
camera was rotated around the optical axis in several steps
to encode the rotation of the color glove in the image plane.
We used 42 camera positions with 18 rotations around the
optical axis each, resulting in a total of 756 views per posture
in all of our databases. Finally, for each posture and view
entry, a number of tiny images of various sizes were created.
Tiny images [1] are simply normalized downscaled color-
classified images of the color glove. We generated several
tiny image sets using image dimensions ranging from 8× 8
pixels up to 64 × 64 pixels. These are used to improve
efficiency when searching for the best match in the database
for the current camera image of the hand.

Figure 2 provides an overview of our system. The three
main parts of the system that produce as output a final hand
posture and pose are introduced in the following sections.

A. Color-Labeled Point Cloud Creation

The data obtained from the Kinect is processed to create
a 3D point cloud containing the positional and color infor-
mation of the detected glove. The camera parameters of the
Kinect’s color and depth cameras were obtained in a stereo
calibration procedure and are used to perform an RGBD-
mapping, which maps color values to the pixel coordinates
of the depth image D. After applying this mapping, the

DB

Color Camera Depth Camera

RGBD-Mapping

Color Segmentation

Label Image,

Depth Image,

Create Color Labeled Point CloudC
am

er
a

Pa
ra

m
et

er
s

Extract Hand Bounding Box

Create Set of Tiny Images,

Matching Cascade

Calculate COG

Results:

Coarse Position,

Error-weighted Interpolation

Final Posture, Coarse Rotation,

Map to World Frame

Color Sensitive ICP-T

Temporal Smoothing

Crop Working Volume [,]min max

^

^

Final Hand Posture and Pose

Robot Interface Visualization

C
re

at
e

th
e

C
ol

or
-

L
ab

el
ed

 P
oi

nt
 C

lo
ud

Pr
ep

ar
e

an
d

Pe
rf

or
m

D
at

ab
as

e
L

oo
ku

p
O

pt
im

iz
e

6D
 P

os
e

L

D

z z

Labeled Point Cloud from Glove Pixels, C

Extract 2D Label Image, L'

T={z }i

{(θ ,R ,E)}i i i

θ R'

(θ, R, P)

PCreate Virtual Hand, H

Fig. 2. Overview of the system.

color glove is detected in the mapped image, M , and using
a lookup table-based color segmentation procedure a color
labeled image, L, is created. The color segmentation is
performed in the YUV color space to reduce sensitivity to
changes in lighting. Each of the glove’s ten unique colors are
labeled with numbers 1 to 10 and colors that do not belong
to any known color class are labeled 0. Now we are in a
position to compute a color-labeled 3D point cloud

C =
{
(pij , Lij) | Lij 6= 0, pijz ∈ [zmin, zmax]

}
, (1)

where pij is the 3D position and Lij the color class label
for every glove pixel (i, j). To create C, we first ensure
that only pixels in L that are not 0 are considered. The
(x, y, z) position is computed for these pixels and in order to
minimize sensitivity to color segmentation outliers only those

Database t1

t2

t3

...

...

...

d12

d13

d11

d32

d33

d31

d72

d73

d71

d43

d42

d41

d53

d52

d51

d63

d61

d62

T

d21

d22

d23

dN1

dN2

dN3

 {(θ , R , E), (θ , R , E)}2 2 2 N N NOutput:

Fig. 3. The set T = {ti}i of tiny images is matched successively against
all N database indices dji, j ∈ {1 .. N}. The output is a 3-tuple set
{(θj , Rj , Ej)}j , where θj , Rj and Ej are the estimated posture, rotation
and matching error, respectively.

whose z world coordinates reside in the working volume
[zmin, zmax] are kept.

B. Database Lookup

The output from the previous step is a labeled point cloud,
C, and from this we create a new labeled image by masking
C with the labeled image, L, from the RGB camera. Using a
bounding box, we extract the hand from C and from this we
create a set of tiny images (with dimensions ranging from
8 × 8 pixels up to 64 × 64 pixels). We need to be able to
quickly compute the similarity between a tiny image in the
database and one computed from the current camera image.
To do this we use a Hausdorff-like distance [18] defined as

m(A,B) =
1

|GA|
∑

a∈GA

min
b∈Ca

‖a− b‖, (2)

where A = {a1, ..., an} and B = {b1, ..., bn} are the two
images, GA is the set of glove pixel coordinates in image A,
Ca is the set of pixel coordinates in image B that have the
same color as the pixel at a ∈ GA and ‖ · ‖ is the Euclidean
norm. We used chamfering [19], in contrast to Wang and
Popović who employed similarity sensitive coding [20], to
approximate Euclidean distance transforms for every color
class in the images, allowing for an efficient direct lookup-
based calculation of the distance between two images.

To take advantage of the varying speed and accuracy
properties of differently sized tiny images, we perform a
multi-stage k nearest neighbor lookup for each sized tiny
image computed from the current camera image. The set
T = {ti}i of tiny images is used as input to the matching
cascade database lookup step (see Fig. 3) and is matched suc-
cessively against all N database indices dji, j ∈ {1, . . . , N}.
In the figure only 3 different tiny image sizes are used, i.e.,
i ∈ {1, 2, 3}. Initially, smaller tiny images, whose Hausdorff
distance can be computed quickly, albeit yielding a lower
accuracy, are used to efficiently pre-select nearest neighbor
candidates. At each iteration, larger tiny image matching,
which is computationally more expensive but results in
higher accuracy, is performed to find the ki nearest neighbors
in significantly smaller sets of candidate images (in the figure
k1 = 5, k2 = 3, k3 = 2). The output is created from the

database indices that remain after the last cascade step (in
the figure d23 and dN3). This results in a set {(θj , Rj , Ej)}j ,
where θj and Rj are the posture and rotation associated with
the database index dj , and Ej is the corresponding matching
error in the last cascade step. This set {(θj , Rj , Ej)}j is then
interpolated, weighting the contributions of (θj , Rj) pairs
with their matching error Ej to the tiny image computed
from the current camera image.

C. 6D Pose Optimization

The result of the database lookup is the 22-dimensional
hand posture estimate, θ, along with a coarse estimate of
the orientation of the hand towards the camera, R̂. We
compute the final estimate of the hand’s 6D pose (rotation
R and position P) by aligning a virtual 3D model of the
hand to the observed point cloud. For this we perform
a color-sensitive Iterative Closest Point-to-Triangle (ICP-T)
computation, where the relative rigid transformation between
the point cloud, C, and the surface of the virtual hand model,
H , is computed and iteratively refined. By performing a
color-sensitive closest point search, the observed points are
only matched to model surface patches with corresponding
colors. As a result, the color patterns in the observation point
cloud are matched to the same color patterns on the surface
of the virtual hand model during the ICP-T process. This
ensures a plausible alignment of the model to the sensor
data even if the posture estimation from the previous step
does not fit perfectly, which cannot be accomplished when
using only positional information.

As a preparation for the alignment process, the coarse ro-
tation estimate, R̂′, is mapped to the world coordinate frame
and the center of gravity (COG) of C is computed. This
yields a coarse pose estimate (R̂, P̂). We represent this pose
estimate as a 4×4 transformation matrix, T̂ . The virtual hand
model, H , is initialized by animating it according to the joint
angles, θ, using linear blend skinning [21] and transforming
it using T̂ . In each iteration of the color-sensitive ICP-T,
we iterate over the points in C and for each point find the
closest point on the surface of H of corresponding color. H
is textured with the color glove pattern, so the color class
label of each triangle in the model is known. To find the
surface point closest to (pij , Lij) ∈ C, we iterate through all
triangles in H with the same color class Lij and store the
surface point, pHij , with the minimal point-to-triangle distance
[22]. We perform back-face culling beforehand to exclude
triangles directed away from the sensor camera. Based on
the set of corresponding points {(pHij , pij)}i,j that results
from the closest point search, we calculate the 4× 4 relative
transformation matrix Tk from H to C in ICP-T iteration
k using a common approach based on eigenvector analysis
and quaternions [23]. The transformation Tk is then applied
to the virtual hand model H , moving it towards the target
point cloud C. After this, the alignment error is given by
the mean of the new point-to-triangle distances. The ICP-T
process is repeated until the alignment error converges. After
convergence, the final hand pose estimate TH is given by the

Po
st

ur
e

E
rr

or

Tr1 Tr2 Tr3 Tr4 Tr5
DBopen+pinch 1.34 0.95 – – –
DBopen+power – – 3.42 2.60∗ 1.60
DBopen+pinch+power 4.89 4.04 3.23 2.57 2.17
DB20 postures 18.0∗∗ 10.30 7.40 8.91 8.99

R
ot

at
io

n
E

rr
or Tr1 Tr2 Tr3 Tr4 Tr5

DBopen+pinch 4.98 4.06 – – –
DBopen+power – – 3.11 2.69∗ 3.10
DBopen+pinch+power 5.59 4.47 3.03 3.46 4.59
DB20 postures 11.67∗∗ 6.28 3.52 4.39 4.79

Po
si

tio
n

E
rr

or

Tr1 Tr2 Tr3 Tr4 Tr5
DBopen+pinch 3.90 5.41 – – –
DBopen+power – – 4.72 3.88∗ 4.41
DBopen+pinch+power 4.64 6.01 4.65 4.04 4.82
DB20 postures 7.33∗∗ 7.46 4.81 4.96 6.11

Fig. 4. Posture and pose estimation errors for various ground truth
experiments. Posture and rotation errors are given in deg, position errors are
given in mm. For all ground truth trajectories, only databases containing the
respective grasping postures were used. The trajectory of the errors labeled
with superscript * is shown in detail in Figure 5, the trajectory of the errors
labeled with superscript ** is shown in detail in Figure 6.

product of the initial coarse transformation matrix and all K
ICP-T iteration matrices:

TH =

(1∏
k=K

Tk

)
T̂ =

(
R P
0 1

)
. (3)

The output of our hand tracking system is the final hand
posture and pose estimate (θ,R, P). To reduce jitter, we
smooth the posture and pose estimation by interpolating with
estimations from the three previous frames, which still allows
for responsive tracking of dynamic movements.

IV. EVALUATION

In this section we evaluate the performance of our system
in three main test scenarios. First we consider the accuracy
of the posture and pose, then the effect of various different
matching cascades on the database retrieval accuracy and
the runtime efficiency of the database lookup, and finally
the system runtime speed versus position error with various
different sub-sampling factors for the ICP-T algorithm.

We use four different databases in the following tests:
two 2-posture databases, DBopen+pinch and DBopen+power
containing an open hand and a pinch and power grasp,
respectively, a 3-posture database, DBopen+pinch+power, con-
taining all three postures, and a database with 20 postures,
DB20 postures, containing the previous 3 postures plus 17 ran-
dom movement postures. Ground truth data was created by
capturing five different movement trajectories: two contain-
ing a pinch grasp, an open hand and some movements (Tr1
and Tr2) and three containing a power grasp, an open hand
and some movements (Tr3, Tr4 and Tr5). These movements
were tracked by our system and their computed postures
and poses became the ground truth for the subsequent tests.
Re-playing these movement trajectories allowed us to create
synthetic ground truth Kinect data (synthetic color and depth

Position Error [mm] Posture Error [deg] Rotation Error [deg]
3.48071 1.47E-13 4.35094
3.20485 8.22E-14 2.71652
3.61951 3.88E-08 1.54151
3.86801 1.16E-07 2.62359
3.4122 9.70E-09 2.3357

3.01739 3.88E-08 1.83967
3.36732 4.85E-08 1.52672
2.22804 8.73E-08 2.52848
3.61767 1.26E-07 3.89927
2.21335 1.43226 1.84647
7.16992 18.4196 4.32423
5.29698 24.1274 1.53388
3.62099 18.0956 4.82822
2.65683 13.5716 3.58528
1.75908 10.1788 1.25365
3.04962 7.63403 1.28083
3.19979 5.72563 0.870425
3.51143 4.29419 3.16775
3.50223 3.22069 2.38937
3.78285 2.41551 1.89211
3.82123 1.81155 5.17177
4.07656 1.35872 3.4231
4.22686 1.01901 5.55935
3.38928 0.764225 6.24774
3.26293 0.5732 1.87215
3.32033 0.429927 2.82722
2.83404 0.322463 1.67253
2.70007 0.241763 2.33737
2.44435 0.181368 3.6784
2.6312 0.135967 0.918551

2.56509 0.102025 3.0599
2.94455 0.076514 2.50703
3.02555 0.0574268 2.87308
2.97755 0.0430793 2.67587
2.76945 0.0322994 4.14263
2.94097 0.0241332 6.80705
3.47477 0.0181473 1.77161
2.94331 0.0135885 1.7892
2.40653 0.0101919 2.35339
2.90073 0.00766008 4.23736
3.29952 0.00571751 2.18291
3.38471 0.0042619 2.91796
2.66759 0.00328824 4.15546
3.13951 0.00240261 6.0248
3.41813 0.00183215 4.60054
3.23042 0.00140097 1.8118
3.46296 0.00102084 3.07598
1.70347 14.2984 1.66925
5.06224 25.0216 2.92305
7.86667 33.0639 3.82119
5.41869 20.2188 3.79694
5.75476 18.8263 6.79818
4.20347 10.4961 1.83071
2.91325 7.10187 1.29299
3.92935 9.03548 2.10441
4.0308 9.25396 2.70352

4.79068 11.1658 3.34585
4.63021 10.9966 3.53205
4.03736 7.87412 2.05282
3.62249 6.54723 2.11776
1.98171 1.019 3.01272
2.59172 0.764251 4.24179
2.47414 0.573191 2.61342
3.72247 0.429896 1.05052
2.27084 0.322419 1.01413
2.02627 0.241814 2.96691
1.65495 0.181362 2.62239
2.0428 0.136022 3.49372

2.01061 0.102018 1.57417
0.741109 0.076513 3.79529
4.71697 0.0573815 2.55312
4.52931 0.0430393 1.31341
4.10475 0.0322802 1.12881
6.75774 0.0242102 2.67529
7.3232 0.0181578 3.57128

4.98673 0.0136191 3.1046
3.55929 0.0102149 2.5039
4.72176 0.00766044 2.82389
4.94286 0.00574471 3.02905
6.03543 0.00431045 4.37373
5.46376 0.0032317 2.91715
3.53944 0.00242381 2.3067
4.34525 0.00181928 2.22342
4.41573 0.00136379 3.28874
5.28633 0.00102336 3.41142
3.28338 0.000767882 3.89062
4.8256 0.000574752 2.8164

3.36431 0.00043305 4.37695
2.91934 0.000323432 3.82979
2.90478 0.000242698 2.47213
5.52285 0.000183881 2.61791
5.10342 0.000134765 3.09424
2.81468 0.00010169 4.26883
5.14106 7.45E-05 1.09288
3.53693 5.57E-05 1.52004
5.87677 4.17E-05 2.17861
4.56328 3.13E-05 1.6047
4.67305 2.35E-05 0.651318
3.96858 1.78E-05 1.30983
5.17587 1.34E-05 1.96356
4.9821 9.98E-06 1.72732

3.73738 7.42E-06 2.46388
5.34882 5.61E-06 2.28076
4.87493 4.21E-06 0.971556
4.27477 3.17E-06 1.53081
4.26759 2.40E-06 1.36083
4.88394 1.89E-06 1.09359
4.07635 1.32E-06 1.66361
3.8951 9.91E-07 7.21858

5.13722 7.53E-07 1.33293
5.88097 6.35E-07 1.6212
4.60691 4.28E-07 1.92125
5.06304 4.01E-07 1.68047
5.55678 2.74E-07 1.51074
5.66379 2.64E-07 0.288035
5.21304 2.49E-07 1.00248
4.93646 9.92E-08 1.39154

0

5

10

15

20

0

13

25

38

50

Po
si

tio
n

Er
ro

r [
m

m
]

Frame Index

Ro
ta

tio
n

Er
ro

r [
de

g]

Position Error [mm] Posture Error [deg] Rotation Error [deg]

Fig. 5. Detailed overview of trajectory Tr4 using database DBopen+power.
Several keyframes of the trajectory are visualized in the bottom of the figure.
The upper row of images shows the virtual hand model according to the
ground truth, the lower row of images shows the difference of the ground
truth and estimation depth images.

images), which was then used as input for our hand tracking
system. Gaussian noise, whose variance was scaled with the
gradient intensity image, was added to each synthetic depth
frame in order to simulate real data. We were then able to
directly calculate the error between the ground truth postures
and poses and their estimation.

A. Posture and pose estimation

To evaluate the estimation quality of our system, we
computed posture, rotation and position errors for all ground
truth trajectories using all databases. Figure 4 shows the
average errors for all experiments. Databases were only used
if they contained the main grasp (pinch or power) performed
in a particular movement trajectory. In most cases, the errors
are lowest when using the respective small grasp-specific
databases (DBopen+pinch or DBopen+power) and highest with
a large database containing several hand postures in addition
to both grasping postures (DB20 postures).

Figure 5 gives a detailed overview of the posture and pose
errors for trajectory Tr4 using database DBopen+power. This
combination resulted in a low average error in all estimation
parameters. The maxima that can be observed in the posture
error can be explained by a quick hand posture change in
the ground truth trajectory while opening and closing the
hand. The posture estimation was lagging behind the ground
truth for several frames before assuming the correct posture.
Figure 6 shows the posture and pose errors for trajectory
Tr1 using database DB20 postures. In this experiment, larger
errors occurred when database entries not related to the pinch
grasp motion of the ground truth trajectory influenced the
estimation result.

The average positional error of our hand pose estimation
lies below 1cm in all of our experiments. This shows a signif-
icant improvement over the results of Wang and Popović [1],
who reported translational errors of 5–15cm along the optical
axis of the tracking camera.

B. Comparison of different matching cascades

We evaluated the accuracy and efficiency of our system’s
posture estimation with regard to different matching cascades

Position Error [mm] Posture Error [deg] Rotation Error [deg]
6.56629 16.3532 5.66731
7.10191 16.6688 5.11499
10.5006 18.7426 7.82143
13.6565 23.7267 8.69876
11.1248 23.3881 8.50412
12.0124 23.5609 9.3531
12.826 23.1125 6.70924

11.9152 23.3273 9.91758
12.9996 16.7272 9.00047
10.5009 15.5043 7.52145
10.4892 13.9379 8.0783
15.4345 31.8974 11.3758
17.2586 32.0583 11.6793
6.04094 18.5488 5.56751
7.2335 22.9525 3.82529

8.60993 22.9948 6.67437
6.87749 23.1402 5.35211
4.60562 23.2582 4.81328
6.69774 23.3615 5.58548
5.98243 24.7528 4.72612
6.63194 25.086 5.68566
7.17034 28.7428 2.49827
8.64727 28.7428 3.84916
7.12034 25.0722 5.24975
9.31749 28.7427 5.36891
3.31813 18.7142 12.5093
7.62648 30.4342 8.25697
4.49353 31.8484 13.5775
5.78477 25.6862 17.0264
12.272 31.499 22.4102
10.507 24.1234 18.7379

8.87522 22.4935 20.1281
5.60735 21.5314 21.5236
9.37266 19.846 20.4643
4.39144 13.9046 16.8275
5.12961 13.8568 18.7203
5.20846 13.5324 18.2182
3.43105 11.0722 12.3801
4.31695 10.8385 13.2337
3.54619 11.3218 16.5714
4.4074 12.0239 14.1451
4.0208 12.5568 14.4451

3.80417 12.2642 14.1414
3.80143 11.9985 14.5857
3.17158 11.9409 14.9881
2.90182 3.9701 14.1488
2.54847 4.28557 10.8104
2.15981 4.27499 9.9944

5.3 4.35199 12.7111
3.18305 4.5591 8.82617
1.75437 10.8336 20.4438
3.01151 10.6146 19.2745
2.5605 10.9154 19.584

1.84898 10.9807 16.6139
1.82892 10.746 16.7116
3.06716 13.893 20.0637
2.54234 12.712 14.5033
4.57174 14.1611 21.3745
2.93673 14.0932 15.3457
2.61525 13.1821 18.5845
4.34421 13.5728 20.8226
6.21759 31.6985 25.4977
7.88473 37.8859 32.9377
18.4035 41.0979 35.7864
4.33016 11.5573 14.6964
6.17672 24.7947 28.2489
10.1607 39.5867 23.3489
6.01055 27.0672 23.9071
5.25487 24.1243 19.2297
5.93873 21.6739 21.4817
3.9534 18.4975 21.9774

4.73392 18.8481 20.9167
4.83826 18.5173 20.2673
5.94672 19.7386 21.2541
5.9762 20.2739 20.3228

3.39092 14.0153 18.3957
5.42695 25.8635 23.5764
5.1687 26.2948 19.6861

4.98466 17.9028 18.0014
5.50022 15.4622 17.3977
4.46923 14.4515 15.025
3.01384 12.2715 19.0661
4.02063 11.8928 8.81445
3.78088 13.641 10.4369
3.40656 10.9291 8.52216
6.39588 17.0501 8.31069
7.06972 18.2674 5.32557
8.19202 21.2448 7.98231
7.57795 20.5429 3.93663
6.27647 17.9377 6.42045
7.36408 17.8483 4.0723
8.17723 20.4562 7.35806
7.29461 17.8506 3.88257
6.10683 17.9659 4.89569
6.56401 16.7197 7.08276
7.16387 14.6332 5.135
5.54922 14.5727 5.23003
7.45136 16.3219 5.37518
6.65379 15.9473 3.3538
7.22371 15.3393 5.27935
7.64807 15.7207 5.64502
7.4497 15.3816 5.30229

6.58044 14.4805 3.90007
6.95316 14.6104 3.91989
3.83413 2.1156 5.34289
7.18646 12.2226 8.28037
8.25161 13.4132 3.88277
8.01421 14.7089 4.67984
8.91782 13.2437 6.64084
9.43297 18.345 7.95971
9.41176 11.4626 9.13852
11.8639 15.9018 8.36593
7.55076 9.11137 3.01168
10.2028 12.9804 7.89042
10.4888 13.1304 9.07296
10.101 13.3506 6.41984

10.5447 13.4337 10.2959
11.2402 22.4081 8.45321
13.9236 22.4649 8.80982
13.1051 23.3726 5.83827
12.4807 23.4704 8.00524
13.3509 23.3605 5.30435
13.1425 22.9711 10.4791
13.0971 18.4011 7.46962
12.5652 15.2786 8.36368
10.2411 14.2873 3.34889
7.34668 8.68941 1.82171
6.73514 8.26184 5.59067
5.39745 18.009 13.5314
8.41479 22.1519 15.8493
13.4415 31.0559 13.3064
15.4781 23.7134 8.26352

14.6 23.8297 10.7708
11.1218 15.9606 8.0283
10.4512 16.464 12.5325
7.0382 6.04005 2.22799

5.20032 9.93691 8.01463

0

5

10

15

20

0

13

25

38

50

Po
si

tio
n

Er
ro

r [
m

m
]

Frame Index

Ro
ta

tio
n

Er
ro

r [
de

g]

Position Error [mm] Posture Error [deg] Rotation Error [deg]

Fig. 6. Detailed overview of trajectory Tr1 using database DB20 postures.
Analogous to Figure 5.

8x8 10x10 16x16 32x32 40x40 64x64

av
er

ag
e

ra
nk

in
de

x
co

m
pa

ri
so

n
tim

e
[m

s]

10

0

20

30

40

50

0.001

0.002

0.003

0.004

0.000

87 0.008

tiny image size

Fig. 7. Runtime efficiency and database retrieval accuracy for different
tiny image sizes. Efficiency is measured by the average computation time
of the distance between two images, accuracy is measured by the average
rank of the true nearest neighbor in the lookup results for a database of
about 8000 images over 500 trial queries. A low average rank represents
high accuracy. A trade-off between efficiency and accuracy with regard to
image size can be observed.

DB20 postures
Matching Cascade Eposture [deg] Time [ms]

161000 → 32300 → 643 16.61 121.6
16500 → 643 16.49 91.2
643 16.69 178.3
815 29.68 65.1

DBopen-pinch-power
Matching Cascade Eposture [deg] Time [ms]

161000 → 32300 → 643 4.88 86.2
16500 → 643 4.88 73.5
643 4.88 78.0
815 24.92 58.8

Fig. 8. Posture error and execution time for different matching cascades.
The notation Dk indicates a k nearest neighbor lookup using D×D images.
Arrows between two such lookups indicate the candidate pre-selection.

1000

ICP-T Subsampling Factor
0

0

R
un

tim
e

[m
se

c]

Po
si

tio
n

E
rr

or
 [m

m
]

875

750

625

500

375

250

125

40

0

35

30

25

20

15

10

5

Database Lookup Time

5 10 15 20 25 30

Fig. 9. Overall runtime and position estimation error in regard to an
increasing point cloud sub-sampling factor.

during the database lookup. Figure 7 illustrates the accu-
racy/efficiency trade-off associated with different tiny image
sizes. While very small images have a low distance computa-
tion cost, the information loss due to the image downscaling
significantly limits their accuracy. In the database matching
cascades, the smallest images can be used for a coarse
pre-selection of nearest neighbor candidates in the early
stages that is efficiently re-ranked using the larger images
in the later stages. We performed four different matching
cascades to evaluate the behavior of the overall efficiency
and accuracy of our system using two example databases.
Figure 8 shows the performance of the different matching
cascades. The slowest database lookup uses only 64 × 64
images and interpolates between the 3 nearest neighbors, the
fastest and least accurate one uses only 8 × 8 images and
interpolates between the 15 nearest neighbors. Performing
multiple lookup stages improves the runtime efficiency while
largely maintaining accuracy. Based on these findings, we
used a two-stage matching cascade in our experiments, pre-
selecting 500 nearest neighbor candidates based on 16× 16
images in the first stage and interpolating the 3 nearest
neighbors based on 64× 64 images in the second stage.

C. ICP-T sub-sampling

To improve the runtime performance we uniformly sub-
sample the sensor point cloud that is used during the ICP-T
pose optimization. This introduces a trade-off between pose
estimation accuracy and overall efficiency. A sub-sampled
point cloud is less computationally expensive to match to
the virtual hand surface, but it contains less positional infor-
mation. This trade-off is visualized in Figure 9, which shows
that the overall runtime of our system quickly converges to
the database lookup time while the position estimation error
slowly rises as less points are included in the sensor point
cloud. Based on this, it is possible to select a sub-sampling
factor that provides a good compromise to achieve interactive
framerates while maintaining high accuracy.

Kinect Camera

Vision PC

Tracking

Database

PA-10 Arm Shadow Hand

Arm PC

Arm-Server

Active
Memory

Hand PC

Hand-
Server

Fig. 10. System component collaboration diagram. The whole system
is distributed over 3 PCs for vision, hand control and arm control. IPC
is implemented using a global Active-Memory node. The dashed line
highlights the robot application setup.

Fig. 11. Pick-and-place experiment, in which the user controls the robot
hand to grasp an apple and place it in a bowl. The image sequences show
the performed power grasp motion for the actuated robot hand and our hand
posture and pose estimation.

V. APPLICATION

The main goal of our hand tracking system was to provide
a low cost system that facilitates interactive robot control. To
test this, we conducted several experiments in which we used
the estimated posture and pose to actuate a compliant Shadow
robot hand. This application was carried out in the Bielefeld
“Curious Robot” setup [24], which has two redundant 7-
DOF Mitsubishi PA-10 robot arms each equipped with a 20
DOF Shadow Dexterous Hand [25], resulting in a total of
54 DOF. The Shadow Dexterous Hands are distinguished
by their human-like design: in size, number and flexibility
of joints, the hands resemble their human counterparts in
a very realistic manner. The entire system (see Fig. 10)
is controlled by numerous processes distributed over three
PCs. The processes communicate and interact using the XCF
middle-ware toolkit [26], which allows for event-driven com-
munication. We heavily use the Image Component Library
(ICL) [27] for all computer-vision related tasks including
camera calibration as well as 3D-visualization and rendering.
The tests were carried out on a single 27-DOF PA-10/Shadow
hand combination. Since the kinematic hand model used in
our hand tracking system closely matches that of the Shadow
robot hands (see Sec. III), the estimated joint angles can be
directly transferred to the robot by sending a command to the
hand-server component. The global rotation and translation
of the hand is mapped from the tracker’s coordinate frame to
the robot’s coordinate frame and transferred to the robot by
issuing a command to the arm-server component. The Kinect

camera was positioned to have a top-down view of the user’s
hand, which provided a large working volume and minimal
occlusion in our experiments.

The hand movements we investigated during the experi-
ments ranged from general hand movements to full interac-
tion with objects. To illustrate the effectiveness of our system
we constructed a database with three different postures:
open hand, power grasp and pinch grasp. Using these three
postures, the user controlled the robot in pick-and-place tasks
(see Figure 11). By observing the movements of the robot
hand while performing movements as input commands, the
user can utilize this direct visual feedback to naturally adjust
the pose and perform the grasping motion with relative ease.
We found that for well-defined tasks, such as power or pinch
grasping an object, the estimation results of our system are
very good with a small database containing as little as two or
three postures. The speed of our system (approximately 15Hz
on a PC with four Intel Xeon E5530 2.4 GHz CPU cores and
4 GBs of RAM) is completely sufficient for interactive robot
actuation and the accurate 3D position estimation provided
by using the Kinect camera facilitates an intuitive transfer of
the user’s hand motions to the robot. A live performance of
our hand tracking and robot actuation system is demonstrated
in the accompanying video.

VI. DISCUSSION

Our approach to real-time hand tracking for the control
of anthropomorphic robot hands is built on that of Wang
and Popović [1], but differs in that we place more emphasis
on retrieving an accurate hand pose than on hand posture.
To produce an accurate hand posture Wang and Popović
implemented fast similarity sensitive coding [20], allowing
more postures to be present in the database while maintaining
near real-time performance. They also added a 2D inverse
kinematics step which adapts the estimated hand posture
to that of the current camera image. These features mean
that in terms of the estimated posture, our system is not
as robust as that of Wang and Popović’s. However, for the
task of controlling a compliant robot hand in tasks such
as grasping, an accurate pose is much more important than
an exact approximation of the user’s hand posture. In our
approach we achieve a higher accuracy in pose estimation
by using a Kinect camera and color sensitive ICP-T. We
argue that database approaches such as ours can be used to
provide a good initial estimate of the posture and pose of the
hand and then this can be used as a pre-initialization step for
model-based tracking approaches that suffer from situations
in which the hand is temporarily lost.

We have observed that under certain conditions, such when
there are occlusions or the database is sparsely populated, it
is possible that the output is an interpolation between two
quite distinct postures in the database. While this is a feature
of our system, allowing us to compute smooth transitions
between discrete entries in the database, it can result in
large discrepancies between the real posture and that given
by the system. An inverse kinematics step could improve

on this, however, as our focus was on the control of an
anthropomorphic robot, accurate estimation of the pose of the
hand took precedence over the posture. Using a combination
of visual feedback, allowing us to adapt our hand during
robot control according to what the situation required, and
taking advantage of the compliance in the robot hand, we
were able to smoothly actuate the robot hand to perform
various grasping and interaction tasks.

In future work there are a number of avenues that we are
considering to improve our current system. Efficiency could
be improved by moving from a pure CPU implementation,
as is done now, to an implementation on the GPU, especially
for the database lookup step involving image matching. For
smaller databases of postures the bottleneck is still the color
sensitive ICP-T algorithm and this could be optimized using
a k-d tree for finding the closest triangle to a Kinect sample
point. Adding depth values from the Kinect camera to the
database itself has the potential to considerably improve on
the estimated posture and indeed could be a step towards not
needing a color glove at all.

ACKNOWLEDGMENT
The authors are grateful to Robert Wang for his valuable

feedback and for providing the design of the color glove. This
work was supported by the DFG Center of Excellence “Cog-
nitive Interaction Technology” (CoE 277: CITEC) and the
DFG grant “Real-Time Acquisition and Dynamic Modeling
of Human Faces, Upper Bodies, and Hands” (BO 3562/1-1).

REFERENCES

[1] R. Y. Wang and J. Popović, “Real-time hand-tracking with a color
glove,” ACM Transactions on Graphics, vol. 28, no. 3, pp. 63:1–63:8,
2009.

[2] “Microsoft Corp. Redmond WA. Kinect for Xbox 360.”
[3] A. M. R. Agur and M. J. Lee, Grant’s Atlas of Anatomy, 10th ed.

Lippincott Williams and Wilkins, 1999.
[4] J. Maycock, J. Steffen, R. Haschke, and H. Ritter, “Robust tracking

of human hand postures for robot teaching,” in IEEE/RSJ Int. Conf.
on Intel. Robots and Systems (IROS), 2011, pp. 2947–2952.

[5] Y.-H. Lee and C.-Y. Tsai, “Taiwan sign language (tsl) recognition
based on 3D data and neural networks,” Expert Systems with Applica-
tions, vol. 36, no. 2, pp. 1123–1128, 2009.

[6] M. Fischer, P. van der Smagt, and G. Hirzinger, “Learning techniques
in a dataglove based telemanipulation system for the DLR hand,” in
Int. Conf. on Robotics and Automation (ICRA), vol. 2, 1998, pp. 1603–
1608.

[7] W. Griffin, R. Findley, M. Turner, and M. Cutkosky, “Calibration and
mapping of a human hand for dexterous telemanipulation,” in Proc.
ASME Int. Mechanical Engineering Congress & Exposition (IMECE),
”Haptic Interfaces for Virtual Environments and Teleoperator Sys-
tems” Symposium, 2000, pp. 1145–1152.

[8] M. Turner, “Programming dexterous manipulation by demonstration,”
PhD Thesis, Stanford University, Department of Mechanical Engineer-
ing, Stanford, USA, 2001.

[9] J. Steffen, J. Maycock, and H. Ritter, “Robust dataglove mapping
for recording human hand postures,” in International Conference on
Intelligent Robotics and Applications (ICIRA). Springer, 2011, pp.
34–45.

[10] H. Hamer, K. Schindler, E. Koller-Meier, and L. V. Gool, “Tracking
a hand manipulating an object,” in IEEE International Conference on
Computer Vision (ICCV), 2009, pp. 1475–1482.

[11] I. Oikonomidis, N. Kyriazis, and A. Argyros, “Full DOF tracking of a
hand interacting with an object by modeling occlusions and physical
constraints,” in 13th IEEE Int. Conf. on Computer Vision (ICCV 2011),
Barcelona, Spain, 2011, pp. 2088–2095.

[12] I. Oikonomidis, N. Kyriazis, and A. Argyros, “Efficient model-based
3D tracking of hand articulations using Kinect,” in 22nd British
Machine Vision Conference (BMV C 2011), University of Dundee,
UK, 2011.

[13] T. Lozano-Perez, G. Gallagher, L. P. Kael-
bling, and R. Tedrake, “Kinect Hand Detection,”
http://www.csail.mit.edu/videoarchive/research/hci/kinect-detection,
2010, Accessed: Jul 2012.

[14] R. Wang, S. Paris, and J. Popović, “6d hands: markerless hand-tracking
for computer aided design,” in Proceedings of the 24th annual ACM
symposium on User interface software and technology. New York,
NY, USA: ACM, 2011, pp. 549–558.

[15] M. Do, J. Romero, H. Kjellstrm, P. Azad, T. Asfour, D. Kragic,
and R. Dillmann, “Grasp recognition and mapping on humanoid
robots,” in IEEE/RAS International Conference on Humanoid Robots
(Humanoids), 2009.

[16] J. Romero, H. Kjellstrm, and D. Kragic, “Hands in action: Real-time
3d reconstruction of hands in interaction with objects,” in In: IEEE
International Conference on Robotics and Automation, 2010.

[17] J. Maycock, D. Dornbusch, C. Elbrechter, R. Haschke, T. Schack, and
H. Ritter, “Approaching manual intelligence,” Künstliche Intelligenz –
Issue Cognition for Technical Systems, pp. 287–294, 2010.

[18] D. Huttenlocher, G. Klanderman, and W. Rucklidge, “Comparing
images using the Hausdorff distance,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 15, no. 9, pp. 850–863, 1993.

[19] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf, “Para-
metric correspondence and chamfer matching: two new techniques
for image matching,” in Proceedings of the 5th international joint
conference on Artificial intelligence - Volume 2. Morgan Kaufmann
Publishers Inc., 1977, pp. 659–663.

[20] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large image
databases for recognition,” Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pp. 1–8, Jun. 2008.

[21] D. Jacka, A. Reid, and B. Merry, “A comparison of linear skinning
techniques for character animation,” in In Afrigraph. ACM, 2007,
pp. 177–186.

[22] P. J. Schneider and D. Eberly, Geometric Tools for Computer Graphics.
New York, NY, USA: Elsevier Science Inc., 2002.

[23] B. K. P. Horn, “Closed-form solution of absolute orientation using
unit quaternions,” Journal of the Optical Society of America A, vol. 4,
no. 4, pp. 629–642, 1987.

[24] I. Lütkebohle, J. Peltason, L. Schillingmann, C. Elbrechter, B. Wrede,
S. Wachsmuth, and R. Haschke, “The Curious Robot – Structuring
Interactive Robot Learning,” in Int. Conf. on Robotics and Automation
(ICRA), Kobe, 2009.

[25] Shadow Robot Company, “The Shadow Dextrous Hand.” [Online].
Available: http://www.shadowrobot.com/hand/overview.shtml

[26] C. Bauckhage, S. Wachsmuth, M. Hanheide, S. Wrede, G. Sagerer,
G. Heidemann, and H. Ritter, “The visual active memory perspective
on integrated recognition systems,” Image and Vision Computing,
vol. 26, no. 1, pp. 5–14, 2008.

[27] C. Elbrechter, M. Götting, and R. Haschke, “Image Component
Library (ICL),” Jan 2010, http://iclcv.org.

