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Abstract

We present a novel approach for non-rigid registration of partially overlapping surfaces acquired from a deforming
object. To allow for large and general deformations our method employs a nonlinear physics-inspired deformation
model, which has been designed with a particular focus on robustness and performance. We discretize the surface
into a set of overlapping patches, for each of which an optimal rigid motion is found and interpolated faithfully using
dual quaternion blending. Using this discretization we can formulate the two components of our objective function—
a fitting and a regularization term—as a combined global shape matching problem, which can be solved through a
very robust numerical approach. Interleaving the optimization with successive patch refinement results in an efficient
hierarchical coarse-to-fine optimization. Compared to other approaches our as-rigid-as-possible deformation model
is faster, causes less distortion, and gives more accurate fitting results.

Keywords: Non-rigid registration, nonlinear shape deformation

1. Introduction

The need to compensate for deformation present on
a set of captured data, or between modeled objects,
is inbred to all dynamic 3D imaging and graphics ap-
plications, such as capturing, modeling, representation,
recognition, morphing, and animation. In particular the
3D scanning of physical objects that undergo some kind
of non-rigid motion leads to a space-time shape match-
ing problem, which has to be solved to achieve a non-
rigid alignment between partial views.

Depending on the application and the scanning sys-
tem, the type of non-rigid motion the object is under-
going and the distortion caused for local and global
features can vary a lot. This mainly depends on the
temporal distribution of the single scans. For real-time
scanners the deformation of consecutive scans is rather
small and their overlap rather large. The acquired data
is typically not problematic from a registration perspec-
tive. In contrast, when high-end scanners are used to ac-
quire precise high-resolution scans for production qual-
ity models, the delay between two consecutive scans
is significantly larger, leading to more deformation and
less overlap between individual scans, and therefore to
a more challenging registration problem.

Large-scale deformations require a more sophisti-
cated regularization of the deformation field in order to

prevent implausible deformations and to keep the sur-
face locally rigid during the registration process (Fig-
ure 1). Since the small strain assumption does not hold
for large deformation, the regularization is typically
implemented as some nonlinear physics-inspired strain
measure, which is to be minimized simultaneously with
the fitting error between the two scans. The resulting
nonlinear minimization is challenging in terms of nu-
merical robustness and computational performance.

In this paper we present an approach for accurate and
robust deformable registration of models acquired by
high-quality, high-resolution 3D scanners. Our method
is able to compensate for various kinds of motion and
deformation the acquired data can exhibit, which is
achieved by a nonlinear, physics-inspired deformation
regularization. Our method is based on a space de-
formation approach, such that it can process arbitrary
point-sampled data and is not affected negatively by de-
generate input meshes. We discretize the surface into a
hierarchy of partially overlapping patches, for each of
which a distinct rigid transformation is found by min-
imizing a global objective function that takes into ac-
count both the need for accurate alignment as well as
for the regularity of the deformation field. The result-
ing rigid transformations are then extended to all sample
points in a rigid manner using dual quaternion interpola-
tion. As a result of this as-rigid-as-possible deformation
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Figure 1: Non-rigid registration of the Torso dataset, where the green
scan is to be registered to the red target model. The cyan models
show the the deforming surface during the optimization process, until
convergence is reached.

our dynamic registration avoids unnecessary distortion
and faithfully preserves geometric features. Both the
fitting and regularization terms are based on a global
shape matching strategy, which results in a unified ob-
jective function that can be minimized in a numerically
very robust manner. Finally, our hierarchical patch dis-
cretization and correspondence refinement further im-
proves stability and accelerates convergence. An exam-
ple of our deformable registration is shown in Figure 1.

Our approach demonstrates a favorable combination
of fitting accuracy, geometric feature preservation, and
computational performance, as we evaluate on several
challenging datasets and compare to recent state-of-the-
art techniques. As such, our approach can have many
practical applications for the acquisition of objects that
undergo undesired motion, such as acquisition of body
parts for orthopedic applications, as well as for the anal-
ysis of deformation with respect to a reference surface
for manufacturing quality control.

2. Related Work

Non-rigid shape registration belongs to the wide fam-
ily of shape correspondence problems [1, 2, 3], and its
understanding is of fundamental importance for a vari-
ety of advanced applications in computer graphics, geo-
metric modeling, and computer vision. In this work we
concentrate on non-rigid registration of partial views,
which is a fundamental problem in 3D scanning. Since

all acquisition sensors can only provide a limited field
of view, scanning a deforming object requires the solu-
tion of partial shape matching problems. This defines
what has been called the problem of time-varying (non-
rigid) registration, which has found different solutions
according to the attainable acquisition frame rate for a
given scanning technology (real-time scanning or non-
interactive scanning). This technological distinction can
also act as a classification of non-rigid registration tech-
niques, since the amount of deformation that needs to be
taken care of is typically less for scanners with a faster
acquisition rate.

Small Deformations

A first family of approaches can be associated to the
advancements of real-time scanning technologies [4, 5],
where data acquisition is characterized by a regular and
dense frame rate (in the order of dozens of frames per
second). Recently developed, handy, and affordable de-
vices from the entertainment industry are having a great
impact on research in computer vision, computer graph-
ics, and multimedia [6], allowing for 3D object model-
ing and scene reconstruction [7]. With respect to profes-
sional high-end scanners, real-time devices provide only
limited spatial resolution and a high amount of geomet-
ric noise. For objects that do not move or deform too
quickly, subsequent view overlapping is quite high and
the deformation between scans is rather small, therefore
allowing to assume that subsequent scans are already
coarsely aligned.

This inspired the development of non-rigid variants
of rigid alignment methods relying on the estimation
of correspondence sets [8]. An alternative method that
does not have to explicitly compute correspondences
has been proposed in [9]. Under the gradual deforma-
tion hypothesis, template-free methods that guarantee
global consistency of the space-time object reconstruc-
tion and prevent erroneous topology changes have been
proposed in [10, 11], while the template-based approach
[12] has been proposed in the same perspective. Other
approaches consider non-rigid alignment as a form of
compensation for nonlinearities related to the acquisi-
tion device, such as optical distortion and calibration er-
rors [13, 14]. A multiview global alignment solution of
these issues has been proposed in [15], while loop clo-
sure issues have been addressed in [16].

Large Deformations

A second group of approaches, which is more simi-
lar to the problem we wish to address, aims to obtain a
high-quality, precise model of a deforming object, for
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instance for the sake of reverse engineering or high-
fidelity reproduction. The acquisition is usually done at
irregular time intervals, therefore a high overlap of con-
secutive views cannot be assumed, nor can consecutive
scans be considered coarsely aligned as in the case of
real-time scanners. It is worth noting that the presence
of deformation could be considered either as a kind of
noise to compensate for, or, on the contrary, as useful
additional information that can be attached to a static
“consensus model” of the object being acquired.

In order to constrain the registration problem some
approaches assume the availability of prior knowledge
of either the object shape (such as template-based ap-
proaches [17, 18, 19]) or of the deformation model (e.g.,
assuming articulated motion [20, 21]). Under general
deformation assumptions, some approaches based on
non-rigid ICP have been proposed [22, 18]. In par-
ticular, a reference template is needed in [22], while
[18] presents a reliable correspondence selection strat-
egy based on a combination of point-to-point and point-
to-plane metrics. The method proposed in [23] esti-
mates a diffeomorphism between data that have under-
gone large deformations.

Other approaches successfully handle large and gen-
eral deformations without the need of a-priori assump-
tions by minimizing a global energy that takes into ac-
count both fitting error and deformation smoothness
[24, 25, 12]. Our method is most closely related to
these latter approaches, as we also employ an objective
function consisting of fitting and regularization terms.
However, our method differs in a few important as-
pects, which result in a noticeable improvement over the
very successful and quite mature state-of-the-art tech-
niques. We discuss the similarities and differences in
Section 5.3, after having presented our method in detail
in the following sections.

In general, when the deformation increases, the prob-
lem of automatically searching for reliable correspon-
dences between partial views becomes more challeng-
ing. Several interesting alternatives to closest-point cor-
respondences have been proposed, based on geometric
features and geodesic distances [25], on the Heat Ker-
nel Map [26], Möbius transformation [27], or a blending
of several intrinsic maps [28]. The focus of this paper
is the deformation model instead of the computation of
robust correspondences. We therefore restrict to simple
closest-point correspondences and use a stronger regu-
larization to prevent distortions due to wrong correspon-
dences at the early stage of the registration. Even larger
deformations of the input scans could be handled by en-
hancing our method by any of the above-mentioned cor-
respondence computations.

3. Method Overview

Our main objective is to estimate the optimal defor-
mation capable of aligning a scan S (the surface we
want to deform) to a target modelM (the reference sur-
face), while at the same time preserving the shape of the
scan as much as possible.

Solving this problem for all the points simultaneously
can quickly become an impractical task, depending on
the size of S. However, since the deformation of the ob-
ject typically is a smooth function, we can safely assume
that nearby points undergo similar deformations, and
discretize the problem at a coarser resolution, solving
the registration for a subset of evenly-spaced points, and
then interpolating the deformation to the rest of the scan.
Similarly to [29] we denote these points as nodes, and
refer to their set withN . Each node has a radius of influ-
ence, chosen such that the nodes’ influence regions cor-
respond to a set of partially overlapping patches. Each
node n ∈ N is then associated a rigid transformation,
i.e., a rotation Rn ∈ IR3×3 and a translation tn ∈ IR3.
Since rotations can be represented by 3 parameters, this
yields 6 degrees of freedom (DoFs) per node. During
the optimization the density of the set N will be hier-
archically adapted in a coarse-to-fine manner, so that
distortion on S is progressively compensated.

The per-node rigid motions are determined by mini-
mizing an objective function consisting of a fitting term
Efit, which drives the deformation of the scan toward the
model, and a regularization term Ereg, which maintains
a smooth and physically plausible deformation through-
out the optimization.

For the fitting term we resort to a set of correspon-
dences C = {P,Q}, where the sample points p ∈ P ⊂ S
are selected from the scan S, while their correspond-
ing points q ∈ Q ⊂ M are found on the target model
M. The fitting term penalizes for each node n ∈ N the
(squared) distance of corresponding points (p,q) ∈ Cn

that are within n’s influence radius, where q is being
transformed by n’s rotation and translation:

Efit =
∑
n∈N

∑
(p,q)∈Cn

‖Rnp + tn − q‖2

|N| · |Cn|
. (1)

The rigid transformations of neighboring nodes n and m
are not completely independent, but will instead be sim-
ilar due to correspondence points (p,q) located in the
partial overlap of their influence regions, i.e., Cn ∩ Cm.
Nevertheless, the regularization term explicitly penal-
izes the difference between neighboring nodes’ transfor-
mations, as measured by the distance of points p in their
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Figure 2: The proposed deformable alignment pipeline, split into three nested phases: Setup, Update and Minimization.

overlap region Pn ∩ Pm after being transformed by the
rigid motions of n and m, respectively:

Ereg =
∑
n∈N

∑
m∈N

∑
p∈Pn∩Pm

‖Rnp + tn − Rmp − tm‖
2

|N|
2 · |Pn ∩ Pm|

. (2)

The global energy is a weighted sum of fitting and reg-
ularization

Etotal = wfitEfit + (1 − wfit) Ereg, (3)

where the fitting weight wfit is increased during the op-
timization so that the surface is deformed in a stiff-to-
smooth manner.

Our framework can be considered as a sequence of
operations distributed on three nested loops (see Fig-
ure 2), where in each loop some of the optimization
features or parameters are selected and considered fixed
throughout the execution of the inner loops. The three
phases are outlined below, and the involved techniques
are described in detail in the following section.

The setup phase is responsible for adjusting the opti-
mization parameters (Section 4.1) and for selecting the
set of nodes N and correspondence samples P (Sec-
tion 4.2). At this step we also compute the weights used
for interpolating the nodes’ transformations to all the
points of the scan S (Section 4.3). The setup phase is
repeated until a given number of iterations is reached.

The update phase updates the target points P for cor-
respondences C = (P,Q) according to the current de-
formation estimate of S (Section 4.4). It also performs
a classification of the nodes (Section 4.5) based on the
updated correspondences, which allows to speed up the
minimization and avoid potential instabilities. The up-
date phase is terminated when the correspondences C do
not improve any further.

In the minimization phase the energy (3) is solved
while keeping the set of parameters, nodes, and corre-
spondences fixed (Section 4.6). Similarly in spirit to

[30], we can interpret all the nodes as rigid objects,
which are coupled to the model M through (1) and to
each other through (2). In this view, the minimization
of (3) is a global shape matching problem, which can
be solved robustly as shown in [31, 32].

4. Detailed Description and Implementation Notes

4.1. Parameter selection

The proposed approach relies on three main param-
eters. Besides the first one, the other two require an
initial and final value each, so that at a given iteration
the current values for these parameters are linearly in-
terpolated.

The first parameter is the number of iterations for
which the setup phase, i.e., the outer loop, should be re-
peated. This value may require tuning according to the
complexity of the deformation that has to be handled:
more demanding cases may need a greater number of
iterations, so that the scan slowly adapts to the target
model.

The node spacing represents the minimum Euclidean
distance between two nodes (and indirectly defines the
spacing of correspondence samples, Section 4.2). While
its initial value should be tuned according to the met-
ric size of the processed scan, its final value controls
the smallest deformation that can be handled. During
the optimization this value decreases, so that the num-
ber of nodes increases. This way the optimization ini-
tially takes care of large, low-frequency deformations,
while handling small, high-frequency ones at the end,
in a coarse-to-fine manner.

The fitting weight wfit represents the weight associ-
ated to the fitting term Efit in the objective function (3).
Similar to other approaches, this parameter is monoton-
ically increased during the optimization (typically from
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Figure 3: Alignment between scan S (cyan) and target modelM (red)
obtained with same number of nodesN , but different numbers of cor-
respondence samplesP. Left: samplespacing = nodespacing. Right:
sample spacing = node spacing/4.

0.1 to 0.9), causing the surface to remain stiff during the
initial optimization stages, while getting softer toward
the end, in a stiff-to-smooth fashion.

4.2. Node and sample points selection
At every iteration of the setup phase we select a pro-

gressively denser set N of regularly-spaced nodes on
the scan S, controlled by the node spacing parameter,
which can be implemented efficiently through simple
farthest point sampling. The node spacing also controls
the sampling of the correspondence pointsP. A key dif-
ference of our method to other approaches, such as [25]
and [12], is that we chose the density of correspondence
samples as a multiple of the node density, which leads to
a more accurate estimation of the deformation field (see
Figure 3). In particular, in all our examples we chose
the spacing of correspondence samples to be 1/4 of the
node spacing. An example of how the sets N and P are
distributed on the scan S is shown in Figure 4.

4.3. Blending of rigid transformations
The deformation of points p ∈ S is computed by in-

terpolating the nodes’ rigid transformations. The in-
terpolation weights can be computed by an arbitrary
smooth weighting function with local support radius r.
In our case a simple inverse distance weighting turned
out to be sufficient, where the weight wn(p) of point p
with respect to node n is computed as

wn(p) =

(
1 −
‖n − p‖

r

)
+

.

Here, r is the influence radius of node n, typically cho-
sen as 1.25 times the node spacing, and (·)+ clamps neg-
ative values to zero. The weights are normalized such
that

∑
n∈N wn(p) = 1.

Once the blending weights have been computed, we
can interpolate the transformations of the nodes to all
other points of the scan. The approaches of Huang et
al. [25] and Li et al. [24, 12] employ linear blend skin-
ning [33] for this task, which is known to produce ar-
tifacts when interpolating strongly different transforma-
tions. In contrast, we employ dual quaternion skinning
[34], which produces a more accurate, artifact-free in-
terpolation of rigid transformations by inherently pre-
serving the orthogonality of rotation matrices. Due to
the more complex formulation of the dual-quaternion
interpolation, we cannot integrate the interpolation of
node transformations into the minimization of corre-
spondence errors, as has been done in the embedded
deformation approach [24, 12] (for simple linear inter-
polation of node transformations). Instead, our dual-
quaternion interpolation is performed after node trans-
formations have been computed, similar to [25].

4.4. Correspondence update

Every time new correspondence samples P ⊂ S have
been selected (Section 4.2) or have been deformed dur-
ing the registration process (Section 4.3), we have to
update their corresponding points Q on the target model
M.

To this end, we find for each sample p ∈ P its clos-
est point q ∈ M. To avoid erroneous correspondences,
we discard any point couple (p,q) if their Euclidean dis-
tance or the angle between their normals is above a cer-
tain threshold [35]. These thresholds are linearly inter-
polated from rather large initial values to more stringent
final values, such that towards the end of the optimiza-
tion, when the surfaces are very close to each other,
outliers can be effectively rejected. While the thresh-
olds on the distance of corresponding points depends on
the model dimensions and the amount of noise and de-
formation present, the normal deviation thresholds are
60◦ in the beginning and 30◦ at the end for all our ex-
amples. The updated correspondence set then becomes
C = (P,Q).

4.5. Nodes classification

To guarantee a numerically robust computation of
each node’s rigid transformation by minimizing the ob-
jective function (3), each node has to be properly con-
strained. This can happen either through sufficient valid
constraints for the fitting term (1), or through a suffi-
cient overlap with neighboring (constrained) nodes in
the regularization term (2).

Nodes that do not have a sufficient number of valid
correspondences are excluded from the fitting term. If
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Figure 4: An extreme (synthetic) version of the Pillow dataset. Left:
The scan (cyan) and the target model (red) after alignment. Right:
Classification of nodes N (yellow, cyan, pink) and correspondence
samples P (green, red) on the scan S. Valid correspondence samples
are green, invalid ones are red. Yellow nodes have sufficiently many
valid correspondences, cyan nodes are not (sufficiently) connected,
and pink nodes do not have sufficient correspondences, but are suf-
ficiently connected to a constrained region. Both the ill-connected
nodes (upper-left) and isolated nodes (lower-right) are correctly la-
beled as disconnected.

such nodes still have a sufficient overlap with other
nodes, they can be used in the regularization term. Oth-
erwise, they have to be completely discarded from the
optimization. Since in our approach the densities of
nodes N and correspondence samples P are coupled
(Section 4.2), we can simply use the fixed thresholds
|Cn| > 20 and |Pn ∩ Pm| > 20 for these tests.

The node classification starts by collecting all nodes
with sufficient correspondences (yellow in Figure 4).
From each of those a breadth first search is started, pro-
ceeding to all neighboring nodes with sufficient over-
lap. At the end of the process, all unmarked nodes are
considered disconnected and are temporarily excluded
from the current optimization step (cyan in Figure 4).
We found this node classification to be crucial for avoid-
ing numerical instabilities, in particular when working
with raw scans that did not undergo any sort of prepro-
cessing and therefore might contain outliers as well as
ill-constrained (or un-constrained) regions.

4.6. Numerical optimization

In the numerical minimization of (3), we can consider
each node as an individual rigid object (having 6 DoF
for rotation and translation). These rigid parts are cou-
pled to each other through the regularization term (2),
which is closely related to the PriMo approach [32, 30],
where it has proven to be a physically plausible de-
formation model. In contrast to the interactive PriMo
application, in our approach the deformation is driven
by the correspondences, i.e., by the fitting term (1) that

couples the nodes of the scan to the target model. Our
optimization can be solved robustly and efficiently by
the Gauss-Newton approach described in [31, 32]. In
each Gauss-Newton iteration, rigid transformation up-
dates are linearized as affine transformations (helical
screw motions), and the optimal updates are found by
solving a sparse 6 |N| × 6 |N| linear system. The re-
sulting screw motions are projected back to the rigid
motion manifold and used to update the current node
transformations. This kind of nonlinear optimization
was shown to be very robust and reasonably efficient
in [32, 30], and worked reliably in our application.

5. Results and discussion

The described approach has been implemented in
C++ and tested on a 2.4 GHz Intel Dual Core lap-
top with 4 GB of RAM. The code can exploit multi-
core processing. Several datasets were considered, each
composed by a pair of surfaces, previously referred to
as the scan S and the target modelM, where the former
presents both some degree of overlap and deformation
with respect to the latter. The Sole (a shoe sole subject
to elastic bending), Mould (a foam rubber mould sub-
ject to external deforming forces), and Pillow datasets
(a pillow taken in two different creased states) were ac-
quired with a high-resolution, structured-light profes-
sional scanner, while the Torso dataset (kindly provided
by the authors of [24]) was obtained through the fast
scanner described in [5]. Both the Sole and Mould
datasets are characterized by a smooth, low-frequency
warping, however the Sole is a problematic dataset for
any ICP-based technique (such as ours) due to the pres-
ence of repeated patterns, which causes many local min-
ima in the objective function and increases the risk of
obtaining a suboptimal alignment. In addition we tested
our approach on some face scans, which represent more
noisy and partial surfaces with complex deformations.

5.1. Alignment performance
For all the considered datasets, our approach suc-

ceeded in estimating a physically plausible deformation,
as testified by the alignment shown in Table 1 and Fig-
ure 5. The final average distance between the scans is
consistent among all datasets with the exception of the
Torso model, where a greater final distance is justified
by the more noisy surface compared to the other high-
resolution scans. Thanks to our physically plausible
regularization term in the error functional, the extension
of the deformation field to the rest of the surface leads
to a plausible warping, even for areas where no overlap
with the target surface exists.
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This is shown for the Sole dataset, where the wedge
heel is correctly bent according to the rest of the data,
as well as for the Torso dataset, where the upper part of
the face has been warped correctly, even though it was
completely missing on the target model.

More examples with noisy surfaces, incomplete data,
and partial overlap are shown Figure 6, where a scan
of a neutral face is registered to scans of different fa-
cial expressions. As the corresponding statistics in Ta-
ble 2 demonstrate, our method succeeds to accurately
register the different scans in reasonable time. For the
example “neutral→smile” a higher resolution could be
used to reduce the deviation in the mouth area, however,
the other regions are sufficiently accurate. Hence, this
problem could well be solved using adaptive (instead of
uniform) refinement, which we leave for future work.
Nevertheless, these examples demonstrate the capabil-
ity of our method for building a blend shape facial rig
by matching a neutral scan (or a template facial model)
to recorded facial expressions.

5.2. Timing breakdown

We now present a breakdown of the involved compu-
tations of our approach with respect to the conceptual
operations described in the pipeline presented in Fig-
ure 2. While the exact time balance may vary depending
on the dataset characteristics and node density, the fol-
lowing general trend can be observed. The most time-
consuming part involves the solution of the minimiza-
tion problem, which accounts for 40% of the total time,
followed by the correspondence update phase, which re-
quires 25% of the total time. Next is the application of
the deformation field to the entire surface (15%), while
the remaining 20% of the time is distributed among
the other operations (parameter selection, selection of
nodes and samples, weight computation, node classifi-
cation, I/O operations).

5.3. Comparison to other techniques

In order to further assess our approach, we compare
to the two approaches most similar to ours, namely the
ones of Huang et al. [25] and Li et al. [12] (which im-
proves upon [24]). Since our approach shares certain
details with [25] and [12], but differs in other crucial
aspects, we start with a theoretical discussion of the
similarities and differences between the methods, before
providing an experimental comparison.

Methodological comparison. The approach of Huang
et al. [25] selects uniformly distributed nodes on the de-
forming scan, and infers their deformation from a set

of robust correspondences computed by taking into ac-
count both geodesic distance and feature signature con-
sistency. During the optimization, neighboring nodes
undergoing the same rigid transformation are clustered
and are assigned a common transformation. However,
since these clusters are only allowed to grow, the fi-
nal phase of the optimization may be hampered since
sub-cluster alignment accuracy would be required to im-
prove the fitting quality. Their error functional consists
of a fitting and a regularization term, both weighted with
constant factors.

Similarly to [25] we compute a hierarchy of nodes,
but instead of a fine-to-coarse node clustering, our node
selection strategy actually is a coarse-to-fine optimiza-
tion. This is particularly useful toward the end of the
processing, when optimization of the deformation field
at node level is necessary to reach complete conver-
gence. Moreover, our adaptive balancing between fit-
ting and regularization is more flexible and further con-
tributes to reaching more accurate results.

The method of Li et al. [12] (which improves upon
[24]) also employs an adaptive weighting for fitting and
regularization in order to reach a higher fitting accu-
racy. Their regularization is based on the embedded
deformation approach [29], which also discretizes the
scan by a set of nodes that build the so-called deforma-
tion graph. Each node has an associated affine trans-
formation, which is kept close to a rigid motion by a
special term in their energy formulation. As a conse-
quence, their method uses 12 DoFs per node (affine mo-
tion), whereas we use 6 DoFs per node only (rigid mo-
tion). This consequently reduces memory consumption
and computational costs for our numerical optimization.
In [12] the resulting node transformations are then lin-
early interpolated to all points of the scan, which for
highly differing matrices might lead to the well-known
artifacts of linear blend skinning (as described in [34]).
In contrast, our use of dual quaternion skinning should
help to avoid these artifacts and reduce distortion during
the registration process.

In contrast to [25], however, Li et al. perform an adap-
tive refinement of the deformation graph in region of
highly differing local transformation, which somewhat
reduces the linear interpolation problems and allows for
more localized updates of the deformation field. In com-
parison, our hierarchical but uniform discretization is
less flexible, and an adaptive refinement is a promising
subject of future work.

Our method differs from both approaches by select-
ing a greater number of correspondences compared to
the node density, which leads to superior alignment ac-
curacy, as demonstrated in Section 4.2 and Figure 3.
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Model |S| |N| initial dist. [mm] final dist. [mm] iters time [s]

Sole 360 k 1986 20 0.035 10 77
Mould 1200 k 1095 100 0.034 4 37
Torso 135 k 953 600 0.142 50 58
Pillow 200 k 2423 5 0.031 10 55

Table 1: Registration performance for the models of Figure 5. |S| is the complexity of the scan, |N| the maximum number of nodes reached during
optimization. Reported distances correspond to the average distances in the initial and final state, respectively. The iterations numbers correspond
to the outer-most loop (setup-phase).

So
le

M
ou

ld
To

rs
o

Pi
llo

w

Figure 5: Registration results. The left column shows the original scan (green) and the target model (red). The right column show the deformed
scan (cyan) and the target model (red).
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Model |S| |N| distance [mm] time [s]

Neutral→ Happy 114k 2257 0.066 137
Neutral→ Smile 114k 2207 0.092 123
Neutral→ Sad 114k 2191 0.072 131
Neutral→ Asym. 114k 2220 0.072 109

Table 2: Registration performance of the face scans of Figure 6. |S| is the complexity of the scan, |N| the maximum number of nodes reached
during optimization. Reported distance corresponds to the average distances in the final state.
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Figure 6: Registration of face scans. The left column shows the neutral source mesh, the right column the target expressions, and the center the
overlay of deformed neutral scan (cyan) and target (red).
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Model Approach Distance [mm] Distortion [·10−5] |N| Time [s]

Sole
Huang et al. 08 0.248 9.34 400 4
Li et al. 09 0.041 2.53 730 60
Proposed (D) 0.040 2.48 725 35

Mould
Huang et al. 08 0.094 2.52 400 2
Li et al. 09 0.045 0.47 709 54
Proposed (D) 0.036 0.29 710 27

Torso
Huang et al. 08 0.698 29.6 400 4
Li et al. 09 0.178 8.72 268 38
Proposed (D) 0.194 8.46 266 35

Pillow
Huang et al. 08 0.240 29.2 400 3
Li et al. 09 (*) (0.049) 2.68 419 62
Proposed (D) 0.086 2.36 421 13

Table 3: Comparison between Huang et al. [25], tested on a single-core 3.2 GHz CPU, Li et al. [12], tested on a 2.6 GHz Intel Core i7, and our
approach (downgraded for comparison,D), tested on a 2.4 GHz Intel Dual Core. (*) Note that the method of Li et al. failed for the Pillow example
(shifted alignment, see Figure 7).

Experimental comparison. The authors of both ap-
proaches kindly agreed to apply their techniques to our
datasets, and provided us with the deformation results
as well as with the maximum number of nodes em-
ployed and the computational performance. In order to
provide a fair experimental comparison we decided to
adapt (downgrade) our algorithm to the approach that
obtained the best results between the two. In particu-
lar, we decreased the maximum number of nodes em-
ployed by our algorithm to roughly match the number
of nodes of the best algorithm. In addition, since both
other methods do not exploit multi-core processing, we
deactivated this feature in our algorithm. In the fol-
lowing, we indicate this adapted configuration with the
symbol (D) to distinguish its results from the ones ob-
tained by employing our optimal working configuration,
already presented in Table 1 and Figure 5. The results
of the comparative assessment are organized in Table 3
and Figure 7.

Non-rigid registration is always a compromise be-
tween fitting accuracy and geometric distortion. Zero
fitting error can be achieved by simply projecting the
scan onto the target model, but this would cause high
distortion. Performing only a rigid registration avoids
any distortion, but leads to a high fitting error. To allow
for a more meaningful comparison we therefore also re-
port the isometric distortion in Table 3. We measure
distortion (in a simplified manner) as the squared rela-
tive difference of edge length between the original scan
(length Le) and the deformed scan (length le), averaged
over all edges e ∈ E of the scan:

1
|E|

√√∑
e∈E

(le − Le)2

L2
e

This measure does (intentionally) not penalize bend-
ing, but is sensitive to stretching and shearing. Obvi-
ously a certain amount of distortion is required to match
the scan to the target model. However, for two meth-
ods reaching a similar fitting accuracy, the one causing
fewer distortion should be the preferred solution.

From a visual inspection of the results (Figure 7),
as well as the alignment error and geometric distortion
reported in Table 3, we conclude that the approach of
Huang et al. [25] yields the least accurate results for the
given datasets. These results seem to confirm the con-
siderations with regard to the fine-to-coarse node clus-
tering: Although it can grant satisfying results for ob-
jects undergoing homogeneous, smooth deformations,
it can be a limiting factor when the deformation be-
comes more heterogeneous, or when small portions of
data need to be accurately registered. While its com-
putational performance greatly outperforms the other
approaches, the alignment performance proved to be
unsatisfactory for the given datasets, regardless of the
number of nodes employed (as testified by the Torso
and Pillow datasets, for which said technique employs a
greater and a comparable number of nodes as the other
approaches).

We compared our approach (D) to the results ob-
tained by Li et al. [12], employing a similar number of
nodes as the ones declared by their technique. While
for the Sole and Mould datasets our approach seem-
ingly reaches better visual results, in the Torso case Li’s
method achieves a better deformation. For the Pillow
dataset Li’s method fails to reach any plausible result,
while our approach achieves a meaningful alignment. In
general, our alignment distances are similar to those of
Li et al., with the exception of the Pillow dataset, which
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Figure 7: Comparison to other approaches by means of visual inspection of the deformed data (cyan) and the target model (red) (same datasets as
in Figure 5). The results of each technique are shown in a separate column, from left to right: Huang et al. [25], Li et al. [12], and our approach
(downgraded for fair comparison,D). Datasets from top to bottom: Sole, Mould, Torso, Pillow.

should not be considered because of the alignment fail-
ure. In terms of distortion our method performs slightly
but consistently better, which might be due to our use
of exact per-node rotations and dual quaternion interpo-
lation. With respect to computational performance, our
technique is about twice as fast as Li’s method for all
the datasets with the exception of the Torso, for which
it is just slightly faster. We assume that this is because

the Torso dataset is a smaller one, requiring the small-
est number of nodes. For more complex deformations
the difference between our 6 DoFs to their 12 DoFs per
node seem to have a stronger influence.

In conclusion our method compares favorably to the
methods of Huang et al. [25] and Li et al. [12], in par-
ticular when it comes to the precise registration of high-
resolution range scans.
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Figure 8: Alignment results for varying node densities. Left: |N| =

2400, 55 seconds. Right: |N| = 9600, 10 minutes.

5.4. Limitations and future work

The proposed approach improves upon closely re-
lated techniques in terms of fitting accuracy, geomet-
ric distortion, and computational performance (for big-
ger datasets). However, there are also some limita-
tions. One major limitation is related to the fact that
the method cannot handle topological changes, such as
an opening mouth. This is mostly due to the adopted
formulation for the smoothing energy that constraints
neighbor nodes to deform similarly, as well as due to the
interpolation policy adopted. A possible way to com-
pensate for this would be to include the interpolation
weights in the error functional, modifying their compu-
tation so that they can convey a topology-aware neigh-
borhood information.

Another issue of the current approach is related to its
scalability. As Figure 8 testifies, our approach could
achieve an even better alignment of the Pillow dataset,
but the increased number of nodes noticeably increase
its computational cost. A possible solution would be
a more efficient error-driven node placement or refine-
ment: Through the estimate of an average error asso-
ciated to each node, one could locate which areas of
the surface need a greater node density, and only refine
the discretization there, rather than imposing a uniform
node density on the entire scan. This would reduce the
overall number of nodes, therefore speeding up the com-
putational performance.

Finally, we would like to extend our approach in such
a way as to treat multiple-view deformable registration.

6. Conclusions

In this work we presented an improved solution
for the non-rigid registration of partial views which
is suitable for deforming object acquisition and mod-
eling, especially for high-resolution surfaces acquired

through professional 3D scanners. The method demon-
strated its capability of suitably handling different de-
grees of deformation for all the considered challeng-
ing datasets. The selection of a denser set of corre-
spondences with respect to the number of node patches
defined on the surface granted our approach an im-
proved accuracy with respect to state-of-the-art tech-
niques for high-resolution datasets, while the adoption
of a fast and robust optimization scheme, as well as a
lightweight correspondence selection procedure granted
satisfactory computational performance. With the com-
plex of the described features, our technique is capa-
ble to provide physically-plausible, as-rigid-as-possible
deformations with accurate and effective detail-aware
registration properties which are valuable for many de-
manding and emerging applications.
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