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Abstract

We present a method for automatically generating reduced marker
layouts for marker-based optical motion capture of human hand
motions. Reducing the number of markers on the hand is impor-
tant to ensure the generated motions are performed in a natural
way and indeed a reduced marker set might be a technical require-
ment should simultaneous body motion capture also have to be car-
ried out. The employed motion reconstruction method is based on
subspace-constrained inverse kinematics, which allows for the re-
covery of realistic hand movements even from sparse input data.
Our marker layout optimization is sensitive to the kinematic struc-
ture and the subspace representations of hand articulations utilized
in the reconstruction method in order to generate sparse marker
configurations that are optimal for solving the constrained inverse
kinematics problem. We propose specific quality criteria for re-
duced marker sets that combine numerical stability with geometric
feasibility of the resulting layout. These criteria are combined in
an objective function that is minimized using a specialized surface-
constrained particle swarm optimization scheme. Our method pro-
vides a principled way for determining reduced marker layouts
based on subspace representations of hand articulations.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Hierarchy and geometric transfor-
mations I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Tracking

Keywords: Hand Tracking, Motion Capture, Marker Layout

1 Introduction

Marker-based optical motion capture, or mocap, is widely regarded
as the standard method for acquiring motions of human performers
in research, industry and indeed entertainment. Numerous com-
mercial solutions [Vicon 2015; OptiTrack 2015; PhaseSpace 2015;
Qualisys 2015] and considerable scientific literature exist on the
topic. While there is a multitude of alternative solutions for motion
tracking, such as marker-less methods [OrganicMotion 2015; Mi-
crosoft 2010] or systems using inertial sensors [Xsens 2015; Biosyn
2015], they are not as widely deployed due to the reliability of
marker-based systems. Marker-based optical mocap systems track
the 3D positions of markers attached to a performer, which can then
be used to infer the articulation of a skeletal model of the tracked
subject. Such systems typically consist of 4 to 32 cameras that cap-
ture at 30 to 2000 Hz and acquire the marker locations with very
high accuracy [Kitagawa and Windsor 2008].

Figure 1: Our method generates reduced marker layouts for op-
tical motion capture of hands by analyzing training data of hand
movements. Left: full marker set covering all joints of the hand.
Center: qualitative illustration of regions that are static (blue) and
in motion (red) during the analyzed precision grasp movements.
Right: reduced marker set that is sufficient to reconstruct the ob-
served motions using our method.

However, despite the quality of marker-based mocap there are
drawbacks and limitations to these systems. The captured data usu-
ally needs to be post-processed extensively, occlusions can cause
gaps or mislabelings in the captured data, too many markers may in-
hibit natural movements, and any rotational information needs to be
computed retrospectively. Some of these issues are amplified as the
number of markers used for tracking increases. A common guide-
line for capturing articulated objects is to cover all major joints with
markers [Guerra-Filho 2005; Kitagawa and Windsor 2008]. In ad-
dition to making the marker attachment process tedious and error-
prone, a high number of markers causes problems when capturing
multiple subjects or tracking body movements and hand articula-
tions simultaneously. Capturing hand articulations in detail typi-
cally requires a dense marker set consisting of 18–23 markers in a
small capture volume. In a large capture volume that also allows for
full body mocap the resolution of the optical tracking system and
the required size of the markers prohibit the usage of a full marker
set. Instead, reduced marker sets have been employed in large cap-
ture volumes—however, this strongly limits the expressiveness of
the captured hand motions. Therefore, body and hand movements
are sometimes captured in isolated sessions and combined in post-
processing [Wheatland et al. 2015].

In this work, we present a method to automatically determine re-
duced marker layouts for optical mocap based on inverse kinemat-
ics (IK). The motion reconstruction method is based on performing
the IK optimization in a subspace learned from prior hand move-
ments, which allows for realistic recovery of hand articulations even
from sparse input data. Our method for reduced marker set opti-
mization is sensitive to this reconstruction method, particularly the
employed hand posture subspace, and thus produces layouts that
are optimal for solving the subspace-constrained IK problem. We
present an approach that minimizes an objective function, which
jointly optimizes numerical stability of the IK problem and the ge-
ometric feasibility of the resulting layout. The optimization is done
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Figure 2: Examples of different grasping types in the taxonomy
of Cutkosky [1989], which we use to evaluate our results. Power
grasps usually involve the whole hand for interaction with large ob-
jects, whereas precision grasps involve only some fingers for han-
dling smaller objects. Illustrations from [Zheng et al. 2011].

using a specialized surface-constrained particle swarm optimization
(PSO) [Kennedy and Eberhart 1995; Kennedy and Eberhart 2001],
which generates marker layouts bound to the surface of an animated
3D hand model (see Figure 1).

We show that, rather than specifying one marker per joint of the
articulated object, it is sufficient to specify one marker per degree
of freedom (DoF) of the parameter space that represents particular
hand articulations. Reduced marker layouts can therefore be deter-
mined by reducing the parameter space of hand postures based on
prior knowledge. Furthermore, we show the principles by which
a reduced marker layout that best corresponds to the subspace
DoFs can be determined. We demonstrate reduced marker layouts
for various hand motions, in particular manual interaction move-
ments based on the grasp taxonomy of Cutkosky [1989], which dis-
tinguishes between different types of power grasps and precision
grasps (see Figure 2).

2 Related work

There is a substantial amount of literature on optical motion cap-
ture, therefore we focus on the related work that is most relevant
to ours, which includes the topics of motion reconstruction based
on motion subspace priors, as well as optimized or reduced marker
configurations.

Employing subspace representations of human motions has been
shown to be effective for motion reconstruction from sparse input.
In [Chai and Hodgins 2005; Liu et al. 2006] local linear models
were used to represent full-body motions and recover skeletal ar-
ticulations from sparse marker sets. While these methods are com-
pletely data-driven and can therefore limit the space of recovered
articulations, our approach uses data-driven subspaces as a prior but
also allows for articulation refinements that lie outside of the ground
truth database using a layered IK approach. Liu et al. [2006] also
target the problem of determining reduced marker configurations by
finding a subset of an initial input marker set that can produce accu-
rate predictions of the remaining markers. In contrast, we present
a bottom-up approach for generating optimal reduced marker lay-
outs for hands based on the kinematic DoFs of an articulated hand
model. While previous methods usually determine reduced marker
sets by subsampling a specific initial marker set, our method more
generally prescribes properties that candidate marker regions on the
surface of a hand model should exhibit, and automatically computes
the optimal marker placement within these regions.

Other works deal with the optimal placement of markers, al-
though not necessarily reduced marker layouts. Recently, Loper et
al. [2014] demonstrated an approach that is able to capture fine de-
tails of soft tissue deformations in addition to full-body skeletal mo-
tions without having to rely on very dense marker sets. To improve
the accuracy of their motion and shape capture, they extend their

initial sparse marker set in a greedy approach that iteratively adds
the next best mesh vertex that minimizes an error metric. We show
that, for the problem of finding good reduced hand marker layouts,
such greedy approaches are outperformed by our PSO-based global
search, as it is less prone to suboptimal local minima.

Le et al. [2013] explore the problem of determining optimal marker
layouts for facial performance capture using an approach that min-
imizes the reconstruction error for ground truth sequences of high-
resolution facial meshes. While their approach is based on sur-
face deformations of facial meshes, we find reduced marker layouts
by purposefully exploiting the kinematic structure and correlations
within an articulated hand model.

While a common guideline for marker placement on hands is to use
one marker per joint [Guerra-Filho 2005; Kitagawa and Windsor
2008], reduced marker layouts for hands have been frequently dis-
cussed. In [Kitagawa and Windsor 2008] an example for a reduced
“mitten” layout was given, where only one marker was placed at the
tip of a single finger. Given an estimation for the global location and
orientation of the hand, the relative movement of this marker can be
interpreted as the simultaneous bending of all fingers. Our work ex-
amines this concept more closely by considering how correlations
and redundancies in hand articulations affect marker placement.

Regarding the degree of realism of finger motions with reduced
marker sets, Hoyet et al. [2012] found that humans are not particu-
larly sensitive to the subtle details of finger animations and that the
perceived quality of motions is not significantly affected by reduced
marker sets. While they manually selected reduced marker con-
figurations, we present an automatic approach based on subspace-
constrained inverse kinematics. In contrast, Chang et al. [2007]
determine the most important markers in a reduced marker set for
the purpose of grasp motion recognition by using supervised feature
selection based on the prediction accuracy of grasp classifiers.

In [Kang et al. 2012; Wheatland et al. 2013] a data-driven approach
for hand motion reconstruction from sparse marker sets was used,
where motions are synthesized by finding database postures that
most resemble the low-dimensional input. Wheatland et al. [2013]
compute a subset of an initial full marker set by performing prin-
cipal component analysis (PCA) on the marker trajectories and se-
lecting the most influential ones. Our method differs from theirs
in two significant aspects: First, our IK-based approach allows for
the recovery of hand articulations that are not present in the prior
database, and second, we determine reduced marker layouts in a
bottom-up way based on the PCA of joint angles, which explic-
itly captures the correlations and redundancies present within hand
kinematics, unlike positional marker trajectories.

Using PCA or other dimension reduction techniques for hand kine-
matics has found widespread success in hand tracking, anima-
tion, and automation [Bernstein 1967; Wu et al. 2001; Kato et al.
2006; Mulatto et al. 2013; Schröder et al. 2014; Tagliasacchi et al.
2015]. To reconstruct the kinematic parameters of an articulated
hand model from positional marker data, we follow our previous
subspace-constrained IK approach from [Schröder et al. 2014]. In
that work we showed that using subspace constraints the hand pos-
ture estimations remain realistic even when input data is missing.
Here, we reverse the problem and seek to find the minimal amount
of marker input data necessary to reconstruct postures accurately
using subspace priors. As in previous works on reduced marker sets
for hand mocap [Chang et al. 2007; Kang et al. 2012; Wheatland
et al. 2013; Hoyet et al. 2012], our marker layouts describe only
the articulation of the hand, whereas the global position is given by
markers placed on the forearm near the wrist.

In the following we describe the employed motion reconstruction
method (Section 3), before discussing the specific quality criteria



Figure 3: Hand model and its underlying skeleton. Also shown
are three exemplary markers on the hand (red), which should move
towards their target positions (blue) using inverse kinematics.

for reduced marker layouts (Section 4) and presenting our layout
optimization scheme (Section 5). Finally we show and discuss
some results of our marker layout optimization and motion recon-
struction approach (Sections 6 and 7).

3 Motion reconstruction

Given a set of target marker positions from an optical mocap sys-
tem, our motion reconstruction algorithm estimates the hand pos-
ture from which the observed positions originate by fitting an artic-
ulated hand model to the data. The hand model consists of 16 joints,
which are driven by 26 kinematic parameters θ = (θ1, . . . , θ26)T.
Of those parameters, 6 describe the global pose of the hand: 3 for
translation and 3 for rotation. The remaining 20 parameters de-
scribe the posture of the fingers, where each finger defines 4 joint
angle parameters. The hand geometry is represented by a trian-
gle mesh, which is animated using linear blend skinning [Jacobson
et al. 2014]. On the surface of this model effector positions are de-
fined, which correspond to the marker target positions in the input
data. The associations between the target and effector positions can
be obtained by either manually labeling the observed data or com-
puting the labels automatically [Meyer et al. 2014; Maycock et al.
2015]. Figure 3 shows the hand model with its underlying skele-
ton and some exemplary markers. The problem of finding the hand
model parameters that move the effector positions to their corre-
sponding targets is solved using inverse kinematics. We apply the
subspace-constrained IK of Schröder et al. [2014] to the marker-
based mocap problem.

3.1 Inverse kinematics

The positions of the k effectors on the surface of the hand model are
represented as a stacked vector x ∈ IR3k and move relative to the
model articulation. They can therefore be expressed as a function of
the kinematic parameters: x = x(θ). These effector positions are
subject to move to their corresponding target positions t ∈ IR3k.
The IK problem t = x(θ) is solved by finding an update to the
kinematic parameter vector θ that minimizes the objective function

EIK(δθ) =
1

2
‖x(θ + δθ)− t‖2 +

1

2
‖D δθ‖2 . (1)

In this objective function, the first term models the least squares
error between the positions of the effector points xi and the posi-
tions of their corresponding target points ti. The second term is a
selective damping for the parameter update δθ through a diagonal
matrix D, which stabilizes the solution and is used for joint limit
avoidance [Schröder et al. 2014].

Subspace IK Standard IK

Figure 4: Hand postures reconstructed from full marker set (left)
and from reduced marker set using standard IK (center) and
subspace-IK (right). While standard IK cannot articulate the
marker-less fingers, subspace IK captures the correlations between
fingers and articulates them using the reduced marker set.

To find the parameter update δθ, the objective function (1) is mini-
mized using a Gauss-Newton approach, in which a linear system of
the following form is solved in each iteration:(

JTJ + D
)
δθ = JT (t− x(θ)) , (2)

where J = ∂x
∂θ

is the (3k × 26) Jacobian matrix of the effector po-
sitions [Buss 2004]. After solving the linear system, the resulting
update δθ is scaled using a line search in order to guarantee conver-
gence. The process of solving the linear system (2) and updating
the effector positions is iterated 5–10 times.

The result of this process is an update to the kinematic parame-
ter vector θ that moves the effector positions on the model to the
marker target positions in the input data. Given a full marker set
that specifies the articulation of every joint this produces accurate
reconstructions of the input motion. However, when using reduced
marker sets the input data is sparse and the motions of joints that
are not constrained by marker positions cannot be recovered. For
this reason, a subspace prior that captures the correlations of joint
movements is employed in the inverse kinematics scheme.

3.2 Subspace prior

To obtain a subspace representation of hand articulations, the pub-
licly available database1 of Schröder et al. [2014], which contains
a high variety of human hand motions, was processed using PCA.
Performing PCA on this database of 20-dimensional hand postures
yields a set of eigenvectors and eigenvalues, which can be used to
construct a 26× (6 + l) matrix of principal components M, which
maps between the full 20-dimensional posture space and a reduced
l-dimensional subspace. The additional 6 dimensions encode the
global pose of the hand, which is not captured in the PCA model.
The number of subspace dimensions, l, determines the amount of
variance in the input data covered by the subspace and can be seen
as a control variable for the eventual number of markers, k, em-
ployed in a reduced marker layout. It was shown in [Schröder et al.
2014] that in order to represent 90% of given hand movements, 3–6
subspace dimensions are sufficient.

Given the PCA matrix M, the full parameter vector θ ∈ IR26 can
be computed from the reduced subspace parameters α ∈ IR6+l as

θ = Mα + µ, (3)

1http://graphics.uni-bielefeld.de/publications/icra14/

http://graphics.uni-bielefeld.de/publications/icra14/


where µ ∈ IR26 is the mean of the database postures. This makes it
possible to represent the forward kinematics of the effector points
x subject to the subspace parameters: x = x(α) = x(θ(α)).

Based on this representation, the IK problem can be expressed in
terms of the subspace parameters. Optimizing for the subspace pa-
rameters in (1) and (2) is possible using the subspace Jacobian

JPC :=
∂x

∂α
=

∂x

∂θ
· ∂θ
∂α

= J ·M. (4)

Substituting JPC for J in the linear system (2) and analogously
changing the damping matrix D yields the IK solution for the
subspace parameters. This solution naturally constrains the recon-
structed hand postures to linear combinations of the principal com-
ponents of the posture database and allows joints to move in corre-
lation to others even when they are not constrained by markers.

However, as there can be variations between the movements con-
tained in the database and the ones observed in the mocap data, we
only use this subspace estimate as an initialization for a subsequent
refinement of the full posture parameters. By removing the sub-
space constraints after the initialization of the subspace parameters
α and refining the estimate by solving the IK problem again for
the full parameter vector θ, the joints with markers are allowed to
move more closely to the observed marker positions. This layered
IK scheme makes it possible to obtain hand motion reconstructions
that are both realistic, due to the subspace prior, and accurate, due
to the full kinematic refinement. Figure 4 shows a comparison of
standard IK with the subspace approach we employ.

4 Reduced marker layouts

Subspace-constrained inverse kinematics makes it possible to fully
articulate a hand model based on a sparse set of marker points.
However, the choice of marker placement is not arbitrary, and find-
ing the optimal marker layout requires a method for assessing the
quality of a given layout in relation to others. In the following, we
discuss the general considerations taken into account and the spe-
cific quality metrics employed in our marker layout optimization.

For a given hand motion trajectory, the most straightforward way
to evaluate the quality of a given marker set is to compare a large
marker set as ground truth data with one reconstructed using a re-
duced marker set. The specific metric we consider here is the po-
sitional reconstruction error, which measures the deviation of the
reconstructed trajectories of the model vertices V from the ground
truth trajectories. While this is an intuitive measurement for the
deviations in the results of the motion reconstruction (see, e.g., Fig-
ure 5), it is not convenient as a metric for choosing an optimal
marker layout. Its computation is prohibitively inefficient and it
does not generalize beyond the specific input trajectory. Instead,
we use metrics that effectively incorporate the IK problem setup,
the subspace DoFs, and generic geometric considerations.

A reduced marker set must be configured in such a way that the
subspace IK can produce the most accurate results. Additionally,
the layout must be designed such that it is well suited for practi-
cal use, which means that it should be unobtrusive, easy to apply,
and should obviate occlusions and self-contact. In the following,
we break these requirements down into two categories: numerical
stability and geometric feasibility.

4.1 Numerical stability

Our IK hand motion reconstruction is based on solving the linear
system (2). The numerical stability of the IK problem is mea-
sured by the invertibility of the left hand side matrix JTJ + D,
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Figure 5: Visualization of the reconstruction error of a reduced
marker layout for grasping motions. In the analyzed motion data,
all fingers bend forward simultaneously and the reduced layout only
specifies markers on three out of the five fingers. Using standard
IK this causes a large error in the marker-less fingers, but using
subspace IK the movement of these fingers is correlated to the outer
markers, which lowers the error.

the key component of which is the Jacobian J (or JPC), which is
the derivative of the marker positions with respect to the kinematic
(or subspace) parameters. Different marker layouts define different
Jacobians, each marker defines three rows in the Jacobian matrix.
Therefore we denote the Jacobian matrix produced by a specific
marker layoutM as JM. Each kinematic (or subspace) DoF cor-
responds to a column in the Jacobian. As we are only interested in
the minimal layout necessary for accurate posture estimation (joint
angles), we omit the three columns in the Jacobian that correspond
to translational DoFs, which means that JT

MJM is a 23× 23 matrix
for the full parameter space and a (3 + l) × (3 + l) matrix for the
reduced parameter space.

A criterion for the invertibility of a matrix is its condition number,
which is low when the problem is well-conditioned and high when
it is ill-conditioned. As we are interested in the numerically most
stable marker layout, we omit the damping matrix D, which is not
impacted by the markers, and only regard the condition number of
the matrix JT

MJM. We compute the condition number of the matrix
JT
MJM using its singular values as

κ
(
JT
MJM

)
=

∣∣∣∣σmax(J
T
MJM)

σmin(JT
MJM)

∣∣∣∣ , (5)

where σmax(A) and σmin(A) denote the maximum and minimum
singular values of matrix A, respectively.

Optimizing the marker layout M for the condition number
κ(JT

MJM) produces marker layouts whose IK solutions are numer-
ically stable by covering the kinematic DoFs of the hand. Taking
into account the subspace prior in the IK system by using the sub-
space Jacobian JPC from (4), the marker positions tend toward po-
sitions that optimally cover the subspace DoFs. Figure 6 illustrates
this concept. Note that the number of markers needed to specify the
IK problem is determined by the number of DoFs representing the
posture. The full posture space therefore cannot be used to produce
sparse marker sets of less than 8 markers, since the IK problem
would be under-specified. Employing a subspace representation fa-
cilitates reduced marker sets.

4.2 Geometric feasibility

Optimizing only for the condition number of the system matrix pro-
duces numerically stable and kinematically meaningful marker lay-
outs, however they can be unsuitable for practical use by placing
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Figure 6: Marker layouts of different sizes for a precision grasp
movement involving the index finger and thumb. The rightmost lay-
out with 13 markers was computed using the full Jacobian J for the
condition number metric, whereas the others were computed using
the reduced Jacobian JPC.

markers at positions that are obstructive for the mocap performer or
are sensitive to occlusions and self-contact.

Therefore, we consider geometric feasibility in addition to numer-
ical stability in order to produce well-conditioned marker layouts
that are also good in practice. We do this in part by limiting the
areas where markers can be placed. While this could be done by
manually predefining allowed regions, this would cause the need
for user intervention. Instead, we define some generic properties
that the model vertices should exhibit to select feasible ones auto-
matically. Additionally, we need to model geometric properties that
cannot be accounted for by preselecting vertices, as they change
during hand motions (e.g., self-contact).

The first set of geometric feasibility properties is the potential areas
for positioning the markers on the surface of the hand model. As the
hand naturally bends inwards and can come in contact with objects
in the front, markers should generally not be placed on the front
side, but rather on the back. Similarly, the markers should be pre-
vented from touching the other fingers during motion and therefore
markers should not be placed towards the sides of the fingers. We
therefore define feasible regions on the surface of the hand model
based on the vertex normals. Only vertex positions pi ∈ V whose
normals ni satisfy the the condition ni · h > 0.9, where h is the
hand model’s back-facing vector, are eligible as marker positions.

The second set of geometric feasibility properties taken into ac-
count is marker movement. In practice, markers placed near the
joint pivot can move non-rigidly along with the joint rotation due
to stretching and sliding of the skin. To prevent this, we identify
regions on the skinned mesh that move rigidly relative to joints
by considering the hand model vertices’ convex skinning weights
[Jacobson et al. 2014] and only using vertices with weight 1 for
one single joint. Another movement-related issue is when mark-
ers can come in contact with each other during motions, which is
especially important even with reduced marker layouts when us-
ing large markers. To prevent marker contact from occurring, we
maximize the minimum distance between markers across multiple
key-frames in the input trajectory. For a single frame, the minimum
distance between two markers in a marker setM is

md(M) = min
a∈M

{
min

b∈M\{a}

{
‖a− b‖2

}}
. (6)

Maximizing this objective function over all frames causes markers
to spatially disperse as far from each other as possible, particularly
when finger movements cause otherwise spatially distant markers
to approach each other more closely.

The combination of these criteria serve as a geometric regulariza-
tion to the kinematic constraints imposed on the marker set, caus-
ing the markers to be placed in geometrically feasible hand regions.

The layouts shown in Figure 6 combine the numerical and geomet-
ric criteria.

5 Layout optimization

We now combine the quality measures for reduced marker layouts
in an energy minimization scheme, in which the marker setM that
minimizes an objective function E(M) is found using stochas-
tic optimization. To this end, we employ a specialized surface-
constrained particle swarm optimization (PSO) scheme, which con-
fines the solution domain to the vertices V of an animated hand
model. In addition to the vertices, the input to this optimization in-
cludes the vertex normals and skinning weights, as well as a train-
ing set of example hand motions. The marker set quality properties
are evaluated on the model’s vertex positions. A distinction can
be made between static properties, which are invariant to hand mo-
tion and relative marker placements, and dynamic properties, which
vary with different motions and marker layouts.

Static aspects of marker layout quality are those that prevent neg-
ative effects of skin sliding (using vertices’ skinning weights) and
obstructiveness (using vertices’ normals). These properties can eas-
ily be incorporated by preselecting only the vertices that satisfy
them. This yields a set of preselected vertices V ′ ⊂ V on the hand
model surface that are eligible as potential marker positions. Ulti-
mately, the optimized marker layout will be a subsetM ⊂ V ′ of
this preselection.

In contrast, dynamic aspects of marker layout quality cannot be
evaluated as isolated vertex properties, as they vary with changes
in hand articulation and placement of the remaining markers within
the layout. These include the numerical stability measured by the
condition number of the IK system matrix, κ(JT

MJM), and the min-
imum marker distance md(M). To account for these changes with
respect to different hand articulations, we evaluate and accumulate
these metrics over a set F of representative key-frames of a given
input hand motion trajectory, which can be automatically computed
using farthest point optimization [Schlömer et al. 2011] in the hand
posture domain. These dynamic properties of the marker set M
are modeled in the objective function E(M), whose definition and
optimization are discussed in the following.

5.1 Objective function

The objective function to be minimized during marker layout opti-
mization is a weighted combination of energy terms with respect to
marker setM

E(M) = w1 · Econd(M) + w2 · Edist(M) , (7)

where Econd(M) penalizes the condition number of the IK system
matrix induced by the marker layout Jacobian, and Edist(M) pe-
nalizes the minimum distance between any two marker positions in
the layout. Both terms are evaluated over a set F of frames from
a hand motion trajectory that are representative of the movements
that should be captured in the reduced marker set. We denote the
marker configuration of layoutM in frame f ∈ F asM(f).

Based on (5), the energy term penalizing the condition numbers of
the induced system matrices is defined as

Econd(M) =
1

|F|
∑
f∈F

κ
(
JT
(f)J(f)

)
, (8)

where J(f) denotes the Jacobian of marker configuration M(f).
This term minimizes the average condition number across all
frames f ∈ F . Since the considered marker layout is a subset of the
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Figure 7: Example 10-marker layouts for the individual objective
function terms. The input data is a precision grasp, where mostly
the index finger and thumb are in motion. Left: When optimizing
only for the numerical stability Econd, markers can be placed in
close proximity, which is geometrically impractical. Center: Op-
timizing for the geometric distance Edist results in spatially distant
markers, but the layout does not capture the analyzed hand articu-
lations. Right: A weighted combination of the two terms results in
a layout that is both numerically stable and geometrically feasible.

preselected vertices,M⊂ V ′, we can precompute the vertex Jaco-
bian JV′ for all frames in F and construct the respective marker
Jacobians by selecting the corresponding rows in this matrix.

Based on (6), the energy term penalizing the minimum distance
between two marker positions across all key-frames is defined as

Edist(M) = − 1

L
min
f∈F

{
md
(
M(f)

)}
, (9)

where L is the length of the hand model, making the term scale
invariant. As we want to maximize the minimum distance between
two markers, this term aims to minimize the negative of the overall
minimum distance over all frames F .

Combining these two energy terms integrates the desired numerical
stability and geometric feasibility properties of the marker layout in
a single objective function. The results of minimizing the two en-
ergy terms and their weighted sum is illustrated in Figure 7. In this
particular example, the condition energy places two markers close
to each other, because the linear system for the subspace parame-
ters is over-specified by the number of markers, which means that
close-by markers do not corrupt the matrix conditioning. Combin-
ing the two energies improves the resulting layout. We use weights
w1 = 0.1 and w2 = 100 in all our experiments. In the following,
the optimization of the objective function (7) is detailed.

5.2 Marker PSO

We find reduced marker layouts by minimizing the objective func-
tion (7) using particle swarm optimization (PSO). PSO is a stochas-
tic meta-heuristic for finding global optima of arbitrary objective
functions without the need for prior knowledge or assumptions
about the optimized problem. The method has recently found
widespread application and success in the context of visual hand
tracking [Oikonomidis et al. 2011; Qian et al. 2014; Sharp et al.
2015]. Our use of PSO for marker placement optimization aims to
overcome the issues of suboptimal local minima often associated
with non-global or greedy approaches.

In the PSO method, an optimal solution to a given problem is found
by iteratively updating and evaluating candidate solutions, or solu-
tion hypotheses. A large set of such hypotheses is managed as a
swarm or population of particles, each of which has an associated
position xt and velocity vt in the solution domain of the objective
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Figure 8: Illustration of a PSO update for one marker posi-
tion. First, the new velocity ṽt+1 of the marker is computed as
a weighted linear combination of the vectors towards the particle’s
local optimum x̄par−xt, the population’s global optimum x̄pop−xt

and the particle’s current velocity vector vt. This update can send
the marker off the surface of the hand model due to the curvature
of the model surface. Therefore, in a second step, the new position
xt+1 is computed by projecting back onto the surface. The velocity
vt+1 is then recomputed accordingly as xt+1 − xt.

function at iteration t. Each particle keeps track of its local previous
best position x̄par in the solution domain, and the population keeps
track of the global optimum x̄pop across all particles.

In each iteration of the PSO process, the velocity of every parti-
cle is updated such that the particle is attracted to both the local
and global optimum, while still moving according to its inertia.
The local and global optima are updated after each particle move-
ment by evaluating the objective function at the new particle posi-
tion. Finally, the solution of the PSO process is the global optimum
achieved after a given number of iterations or after convergence of
the optimum value.

In our application, the solution domain of the objective function is
the domain of marker layoutsM. To map this to the PSO scheme,
we define a particle at iteration t as the stacked vector of k marker
positions xt ∈ IR3k of the candidate solution. We further modify
the generic PSO scheme such that the 3D positions within each par-
ticle are constrained to the surface of the hand model. Specifically,
after every particle update we project each marker position in xt

onto its spatially closest vertex in the set V ′ of preselected feasible
positions on the hand model.

The new position xt+1 of a particle is determined by computing its
new velocity vt+1 and translating along this vector. To this end, we
first compute the standard PSO velocity update as

ṽt+1 = w · (vt + c1 · r1 · (x̄par−xt) + c2 · r2 · (x̄pop−xt)), (10)

where w is a weight determining the overall step length of the up-
date, c1 and c2 are importance weights for the local and global at-
tractors, respectively, and r1 and r2 are uniformly distributed ran-
dom numbers in [0, 1]. Due to the curvature of the hand model
surface, applying this linear update to the current particle position
can cause the markers to stray from the surface. To counteract this,
we project the updated marker positions back onto the permissible
regions defined by vertices V ′, which we denote by a projection
operator ΠV′ . The final particle position update is therefore

xt+1 = ΠV′(xt + ṽt+1) . (11)

After this, the new particle velocity is computed as vt+1 = xt+1−
xt. Figure 8 illustrates the surface-constrained PSO update.

Similar to Oikonomidis et al. [2011], we perturb one randomly cho-
sen marker position in 50% of the particles once in every third
iteration, and use the weights c1 = 2.8, c2 = 1.3 and w =

2/
∣∣∣2− ψ −√ψ2 − 4ψ

∣∣∣ with ψ = c1 + c2. We use a total of
1000 particles, perform 100 PSO iterations and use between 3 and
10 keyframes depending on the input hand motion trajectory. Us-
ing this method, we can find reduced marker layouts that optimize
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Figure 9: Comparison of the convergence behaviors our PSO en-
ergy minimization and a greedy approach with identical initializa-
tion. While the greedy approach converges to a suboptimal local
minimum after about 50 iterations, our stochastic optimization min-
imizes the energy faster and achieves a better result.

the objective function (7) and as a result are numerically stable and
geometrically feasible.

6 Results

We evaluated the convergence properties of our marker PSO
scheme and the motion reconstruction accuracy of the marker lay-
outs generated using our method in a varied set of evaluation tri-
als. The hand movements involved in these trials included a variety
of grasping and other manual interaction movements, as well as
generic finger movements and gestures. In the performed trials, we
measured run-time statistics and average per-vertex errors of the re-
constructed hand motions compared to the ground truth input. For
proper evaluation of the accuracy of our approach, the input mo-
tions being reconstructed were not contained in the database used
to generate the subspace model. As our reduced marker sets are op-
timized to represent only rotational DoFs of the hand articulation,
an initial estimate for the global position of the hand is given by a
fixed anchor marker on the forearm.

We evaluate the convergence properties of our PSO-based marker
layout optimization by comparing it to a more straightforward
greedy approach. For this, we adapted the farthest point optimiza-
tion scheme of [Schlömer et al. 2011] to find the marker subset of
the initial vertex set V ′ that minimizes the objective function (7).
Briefly stated, this method first iteratively selects the next best ver-
tex as a marker position that reduces the objective value until the
desired number of markers has been placed. Then, this greedy pro-
cess is repeated such that each selected marker position is replaced
by the next better remaining vertex position, until no more substi-
tutions can be done to improve the objective value. This is already
a more sophisticated approach than the greedy methods for con-
straint selection used in [Loper et al. 2014; Thiery et al. 2012] and
can therefore serve as an upper bound for the effectiveness of such
methods. Figure 9 compares this greedy approach with our PSO-
based one with identical initialization and shows that our method
converges faster and achieves better objective values. The runtime
for our PSO method varies between 5–10 seconds for 100 iterations,
depending on the number of selected key-frames F (typically up to
10). For the same problem setup, the greedy approach takes be-
tween 45 seconds and 3 minutes to converge.

[Wheatland et al. 2013] [ours]

(a) (b) (c) (d)

Figure 10: Comparison of 6-marker layouts generated for preci-
sion grasps using Wheatland et al. [2013] and our approach. In
(a) the complete set of preselected vertices V ′ is used as the base
marker set, which causes the selected markers to cluster at the in-
dex fingertip, as it exhibits the most movement. In (b) a random
subset with 5% of V ′ is used as the base marker set, which leaves
3 candidate positions per joint. In this case the markers cluster
around the index and thumb tips. In (c) 1% of V ′ is used, which
leaves one candidate position per joint. The resulting marker set is
distributed among the most active joints in the input motion. In (d)
our approach generates a marker layout from the complete set V ′

based on the DoFs of our subspace model.
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Figure 11: Average reconstruction errors for grasping motions, us-
ing marker sets of varying sizes. Marker layouts specifically gen-
erated from grasping training motions lead to lower reconstruction
error than layouts based on generic training data. The manually se-
lected marker layouts of Hoyet et al. [2012] produce similar results
to our automatically generated generic layouts.

A comparison of our marker layout optimization with the marker
subset selection approach of Wheatland et al. [2013] is shown in
Figure 10. A crucial aspect to note regarding this comparison is
that the two methods are based on different marker layout gener-
ation paradigms. While Wheatland et al. [2013] select the most
influential markers in an initial base marker set, our method gener-
ates marker layouts more freely within the dense set of preselected
vertices V ′ (see Section 5). Figure 10 shows that the results of the
subset selection method are strongly influenced by the choice of
the base marker layout. As the method of Wheatland et al. [2013]
is based on computing an importance ranking for the base markers
according to their positional trajectories, the selected marker lay-
outs are clustered around the areas of the hand that move the most
in the considered hand motion. In contrast, our method is sensitive
to the hand kinematics and the subspace model employed in our ap-
proach, which produces layouts that are well-suited for subspace-
constrained IK.
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Figure 12: Reduced marker layouts for some example motions. First row: precision grasp motion involving multiple fingers. Second row:
power grasp motion of a small object. Third row: sequence in which the thumb touches all the other fingers. The marker layouts are optimized
to allow for accurate reconstruction of the input motion. Marker-less fingers tend to have slightly larger reconstruction errors, however they
still move in correlation to the marker-constrained fingers due to the subspace approach.

To assess the suitability of the our marker layouts for motion recon-
struction, we compare the reconstruction error of different marker
layouts in Figure 11. The testbed of this evaluation is a set of grasp-
ing motions based on the grasp taxonomy of [Cutkosky 1989]. We
generated two different types of marker sets with varying sizes—a
specific type based on grasping input motions and a generic type
based on general gestures and hand articulations. The reconstruc-
tion error is lower when using the grasp-specific marker layouts. In
particular, to achieve a reconstruction error below 2 mm, a specific
layout generated by our method only requires 6 markers, whereas
generic layouts require 9 markers or more. Additionally, Figure 11
also compares our automatically generated marker layouts with the
empirically selected layouts of Hoyet et al. [2012], who also per-
formed motion reconstruction based on constrained IK. Their man-
ually selected layouts (see their Figures 4 and 8) produce similar
results to our automatically generated generic layouts.

Figure 12 shows some examples for reduced marker layouts com-
puted by our approach for various different movements. The results
show that markers are preferentially placed in areas that have the
most involvement in the considered hand motion. If the motions
contain more varied articulations for specific fingers over others,
these fingers will receive more markers, as the low-frequency de-
tails of the remaining markers are not influenced by as many sub-
space DoFs. In the third row of Figure 12, the input motion involves
all fingers and the reduced marker layout accordingly distributes
markers across all of them. This last example demonstrates that it
is possible to combine multiple types of hand motions (e.g., each
finger touching the thumb) and then solving for the corresponding
marker layout. To this end, the PCA matrix M in (3) and the sub-
space Jacobian JPC in (4) are simply computed from the union of
the different sets of training data.

Figure 13: Generic 6-marker and 8-marker layouts generated from
our full set of available training data.

Please see the accompanying video for comparisons of the full and
reduced marker layouts using standard IK and subspace IK for re-
constructing the hand motion sequences shown in Figure 12.

Although our method is primarily designed for generating specific
marker layouts to be used for tracking specific types of hand move-
ments (e.g., power grasp, precision grasp), we also generated two
generic marker layouts by using all available training data from
[Schröder et al. 2014] for constructing the posture subspace, which
then includes a wide range of strongly varying hand motion tra-
jectories. The resulting 6-marker and 8-marker layouts are shown
in Figure 13. Since in the training data the middle finger moved
mostly in correlation with other fingers, its movements can be in-
ferred from the subspace, such that the 6-marker layout does not
place a marker on it. The 8-maker layout interestingly is quite sim-
ilar (up to the marker on the ring finger) to the empirically chosen
6F-2T layout of Hoyet et al. [2012] (see their Figure 8b).



Method Average error Maximum error

Standard IK 1.79 cm 7.9 cm
Subspace IK 0.89 cm 2.1 cm

Table 1: Reconstruction errors for subspace-IK and standard IK
with a 4-marker layout generated for a variety of manual interac-
tion motions. While the standard method can deviate by almost
8 cm, the subspace method achieves adequate results consistently.
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Figure 14: Per-frame computational time for tracking a typical
(time-coherent) hand motion sequence, measured on an 8-core Intel
Xeon(R) E5-1620 CPU at 3.60 GHz.

We verify the accuracy of our motion reconstruction by comparing
the average reconstruction errors of subspace-IK to standard IK for
a reduced marker layout produced by our method. Table 1 shows
the average and maximum errors for a variety of manual interaction
motions using standard IK and subspace-IK and the 4-marker lay-
out shown in Figure 5. The improvement of the subspace method
over the standard method ranges from 9 mm to almost 6 cm.

Although an increase in computational performance is not the pri-
mary motivation for employing sparse marker layouts, Figure 14
shows that the tracking time scales approximately linearly with the
number of markers. Note, however, that even for an over-specified
26-marker layout the IK-based hand tracking requires less than 5 ms
without any GPU-acceleration [Schröder et al. 2014].

7 Discussion

We have presented a method that automatically computes reduced
marker layouts for optical motion capture by employing a subspace-
constrained IK motion reconstruction. Our layout optimization
minimizes an objective function that measures the numerical stabil-
ity and geometric feasibility of the reduced marker configuration.
This objective function is minimized using a specialized surface-
constrained particle swarm optimization. The resulting marker lay-
outs are suitable for solving the subspace-IK motion reconstruction,
and are specific to the type of hand motions that should be expressed
with and recovered from the sparse marker data.

Our method makes it possible to generate marker layouts that are
fine-tuned to the parameters of a given mocap setup. If there is a
limitation to the number of markers that can be used in the mocap
setup, our method computes the optimal placements for the given
number of markers that allows for realistic expressive motion re-
construction. An insight provided by our work is that it is sufficient
for high quality motion reconstruction to place individual markers
that correspond to low-dimensional control parameters of hand ar-
ticulations. For instance, to track grasping motions it is sufficient to
only place one marker on the thumb, index finger, pinky finger, and
wrist. The subspace based reconstruction will plausibly interpolate
the movements of joints that are not immediately constrained by
markers.

Limitations of our approach include the stochastic nature of the par-
ticle swarm optimization and the need for parameter tweaking. An-
other drawback of our subspace-oriented method is that while it
produces good results for specific hand movements, it does not nec-
essarily provide a general-purpose marker layout result that can be
used for all types of motions and produce high-quality results. The
marker placement as well as the motion reconstruction are limited
by the subspace priors employed. However, given prior knowledge
of the motions intended to be tracked, our method produces accu-
rate and robust results. Beyond marker placement, our approach
could be used generally to identify salient regions in articulated
bodies, which could be of interest for different avenues of motion
detection and reconstruction.
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