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Abstract— Optical motion tracking systems often require a
lot of manual work to generate clean labeled trajectories. This
can be a deterrent if the goal is the creation of large motion
tracking datasets. Especially in the case of hand tracking,
issues of occlusion (often self-occlusion by other fingers) make
the post-processing task very difficult and time intensive. We
introduce a fully automatic optical motion tracking method
that utilizes a model based inverse kinematics approach. The
Hungarian method is used to efficiently calculate associations
between model markers and motion capture markers and we
demonstrate an elegant solution to the problem of occlusions
using a posture interpolation step.

I. INTRODUCTION

Optical tracking systems that employ markers, such as the
Vicon system, are able to capture highly accurate kinematic
movement data, but a serious drawback of these systems
is the need to post-process the data in order to arrive at
fully labeled trajectories. Especially in the case of hand
tracking, occlusions of one or more markers, which can
occur especially when grasping and manipulating objects,
can mean many hours of manually intensive work to clean
the data [1]. Another difficulty is the presence of ghost
markers, caused by unwanted reflections, that if categorized
incorrectly can lead to large errors in the tracking process.

We propose a novel fully automated tracking technique for
marker based optical tracking systems. At its heart it relies
on using articulated models in an inverse kinematic mode
to ensure only realistic postures are arrived at. Associations
between model nodes and 3D points delivered by the optical
system are efficiently computed using an adapted version of
the Hungarian method [2]. Ghost markers that do not lead
to realistic postures, checked using inverse kinematics (IK),
are ignored. Reappearing plausible markers are used as the
end points of a posture interpolation step to ensure smooth
trajectories. Our algorithm operates in an online mode and
in an offline mode that uses knowledge of the full trajectory
to solve issues of occlusion [see Sect.III-C].

Although our examples are focused on hand tracking
in this paper, the method itself is general. Once models
are available for the objects in the scene, our method is
fully automatic and makes the rapid generation of large
datasets of motion interactions possible. This has positive
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Fig. 1. Snapshot of the method tracking two hands (each with 26 DoF)
and a number of rigid body objects synchronously. The small blue spheres
on the objects are model effectors and the multi-colored spheres are the
unlabeled 3D motion capture data points.

implications for the Learning by Demonstration [3], [4]
robotic community and indeed many fields in which realistic
motion tracking data is required. Figure 1 shows a snapshot
of our approach in action with two hands, each with 26
Degrees of Freedom (DoFs), and a number of rigid body
objects being tracked.

II. RELATED WORK

In a recent paper, Meyer et al. [5] proposed a method using
least square optimization to allow online marker labeling of
human trajectories in a fully automatic manner. Our approach
distinguishes itself from theirs in a number of ways. The
main difference is that we use IK to articulate the models
in the scene. This allows us to sparsely cover the people
or objects we are tracking. Especially in the case of human
motion tracking this allows for more natural movements to
be made. It also allows us to handle occlusions in a way that
is not possible with their approach [see Sect.III-C]. Finally,
unlike in their paper in which only single skeleton tracking is
demonstrated, our approach is a general one and allows for
multiple objects to be tracked in parallel. Schubert et al. [6]
extended the approach to allow arbitrary poses be used in
the initialization phase.

Aristidou and Lasenby [7] also achieved online automatic
tracking and put an emphasis on predicting the position of
missing markers using an unscented Kalman filter. Their
method also used IK, but only to maintain bone length.



Indeed a major drawback of their approach is that they do not
use physically plausible models to restrict model movements
to realistic configurations. Furthermore, without a knowledge
of the underlying model they require markers to be placed on
every segment, which is not a requirement of our method.
Hornung and Kobbelt [8] also employed IK, but required
groups of markers to be placed on each segment as the
underlying structure of tracked bodies had to be learned.

Other approaches such as Cerveri et al. [9] and Klous
and Klous [10] only work in an offline mode and strive to
achieve very accurate compensation for the movement of the
skin with relation to the underlying skeleton. Such accuracy,
while nice to have, is not required for many applications and
furthermore the complexity of the used models make real-
time application impossible to achieve.

Hand tracking and especially hand posture estimation is a
difficult problem due to the complexity of the hand itself,
which has, excluding position and orientation, up to 27
degrees of freedom [11], [1]. This has resulted in many
researchers turning to data-gloves [12], [13] or colored-
gloves [14], [15] to track hands. Wearing gloves, especially
those embedded with sensors, can impede natural movements
and even the most accurate are outperformed by optical
tracking systems [16]. Some recent systems track bare hands
[17], [18], [19], [20], but even though these methods have
improved considerably using depth based sensors, they still
cannot rival the accuracy of marker based optical tracking
systems [1].

There are at least two commercial systems designed to
reduce the burden of manual labeling: Vicon’s Blade [21] and
Motion Analysis’ Cortex [22]. However, both these systems
rely on well labeled data with only small gaps in trajectories
as input and therefore an element of manual post-processing
is still required. Furthermore, they do not use an inverse
kinematic approach and it is therefore suggested that each
segment has at least one attached marker.

III. AUTOMATIC TRACKING METHOD

The method relies on fitting models to the 3D unlabeled
point data provided by a motion tracking system. The prob-
lem reduces to finding the articulation of the loaded models
that minimizes the overall distance error to the 3D point data.

A. Initialization

Figure 2 shows the initization steps in our algorithm. To
avoid alignment of models to motion data points issues, ghost
markers should be minimized and all valid markers should
be visible in the first frame of a capture session. In the
Automatic Clustering step the Euclidean cluster algorithm in
the Point Cloud Library (PCL) [23] is used to automatically
cluster spatially close motion data points in the scene. For
cases in which on average the distance separating objects is
larger than the size of the objects in the scene this performs
well. However, a manual correction may need to be applied if
the scene does not meet this specification. This configuration
can be saved and later loaded to ensure subsequent trials are
automated.

Fig. 2. Overview of the initialization procedure.

In the Load Models step the assumption is that a database
(DB) of two types of models exists: rigid body models and
complex multiple DoF models. For our system simple rigid
body models such as a cube, sphere, cylinder etc., which can
be scaled and have fixed motion capture marker positions,
were defined and stored in the DB. We also use the hand
model introduced by Schröder et al. [18], but stress once
again that the method itself is a general one that scales to
different complex models. It is also possible to “on the fly”
create rigid models by simply selecting a set of markers that
are attached to a rigid object and saving the configuration
(the positions of all markers in the model relative to the first
marker).

In order to ensure that the method can optimally fit
complex models to raw Vicon data a calibration posture is
adapted. For full human tracking this could be the T-Pose,
and for the hand tracking we adopt a pose in which the hand
is placed flat on the table with the fingers slightly spread
and the thumb extended away from the fingers towards its
joint limit. Ensuring a good match between the placement of
markers on the hand and effectors on the model is aided by
photographing the hand on a sheet of grid paper. In general
it is important to accurately position object markers such
that they conform to the position of effector points on their
associated models, and thus facilitate correspondences to be
made.

The loaded models s ∈ S are then aligned to the target
clusters t ∈ T by trying all possible combinations (s 7→ t) in
a brute-force manner and selecting the assignment with the
lowest cost. A model is denoted as a cluster of source points
s = (s1, . . . , sk)T and a target cluster of motion capture
points t = (t1, . . . , tl)

T . In the Alignment and Scaling step
Principal Component Analysis (PCA) is used to calculate
the transformation matrices Ts and Tt, which describe the
position and orientation of each s and t in canonical form,
respectively. This allows us to compute the transformation
matrix Tt

s needed to initially align each model s to each



Fig. 3. Inverse kinematics based tracking. The details of the highlighted
Gap Handling step are shown in Fig. 4.

cluster of motion capture points t:

Tt
s = TtT

−1
s . (1)

The PCA eigenvectors used to construct Ts and Tt are
determined up to sign only. We therefore try all possible
combinations of eigenvector orientations (by multiplying
them by ±1) for the construction of the mapping Tt

s, and
select the one resulting in the smallest geometric distance.
Note that for good PCA alignment it is important that marker
configurations are not isotropic. We also use the PCA results
to calculate oriented bounding boxes for each cluster and
model. The difference is used to calculate a scaling factor
that stretches or contracts models to fit the observed data. In
the case of hand tracking this is necessary as a wide variety
of human hand sizes exist. The PCA step is followed by a
rigid Iterative Closest Point (ICP) step to correct for slight
errors of the initial alignment.

In the Optimize Pose step we solve the problem of
optimally assigning model points to target points using the
Hungarian method (see next section III-B). This is followed
by an IK step to allow the model’s pose to be updated to
better match the target points (also section III-B). The best
matching model is found using

sbest = arg min
s∈S

[E(t, s) + αD(t, s)] , (2)

where S is the set of loaded models and the function D
calculates the difference in the number of markers between
the t and s. E returns the mean euclidean distance between t
and s and α is a weighting factor that can be tuned depending
on how noisy the initial scene is (i.e., missing markers or
erroneous ghost makers). For our tests α was set to 1 as the
setup was optimised to ensure clean data at least in the initial
frames. This matching mechanism compares each model to
each cluster, respectively.

B. Tracking using inverse kinematics

Figure 3 shows the steps involved in our tracking ap-
proach. Every marker based optical motion system suffers
from disappearing valid markers and appearing ghost mark-
ers and it was therefore important to be able to compute

optimal associations between clusters s and t (Optimize As-
signment step). This we achieve by in each frame employing
the Hungarian method [2], [24] which minimizes the cost

min
m(i,j)

k∑
i=1

k∑
j=1

m(i, j) ‖si − tj‖ , (3)

where m(i, j) = 1 if si is matched to tj , otherwise it is 0.
This ensures that each model marker is matched to a unique
target marker. The Hungarian method requires as input a
square k×k distance matrix, but due to either ghost markers
or missing markers it can happen that the number of points
in the clusters s and t differ. We handle this by padding the
distance matrix with extremely large values [25]. The time
complexity of the Hungarian method is O(k3), which is very
efficient considering the relatively small number of markers
that are tracked in most motion capture setups.

If a source marker disappears (Marker Missing step)
the gap filling procedure is invoked (see Section III-C).
Otherwise, the Inverse Kinematic step presented by Schröder
et al. [18] is used to minimize the distance error between all
s = (s1, . . . , sk)T and t = (t1, . . . , tk)T cluster pairs with
equal numbers of markers (now sorted w.r.t. the above marker
assignment). The IK problem, t = s(θ), can be solved by
iteratively finding a parameter update ∆θ from the previous
frame θ that minimizes the following function:

E (∆θ) =
1

2
‖s(θ + ∆θ)− t‖2 +

1

2
‖D∆θ‖2. (4)

The first term models the least squares error between the
effectors si and their target positions ti. The second term
regularizes the under-determined problem by damping the
parameter update ∆θ with a diagonal matrix D of damping
weights.

We minimize (4) using a Gauss-Newton approach and in
each iteration the following linear system is solved(

JTJ + D
)
δθ = JT (t− s), (5)

where J is the Jacobian matrix of the effector positions

J =
∂s

∂θ
=

(
∂si
∂θj

)
i,j

. (6)

The calculation of J is described in [26] and solving the
system (5) yields the update direction δθ. The process is iter-
ated until the Gauss-Newton minimization converges, which
typically requires 5–10 iterations. As a starting value for ∆θ
we use the final update from the previous frame. In order
to help prevent unrealistic or indeed physically impossible
model configurations we employ joint limit avoidance [27],
[18] in the final Update Models step.

C. Gap handling

Figure 4 displays how our method handles occlusions
which result in gaps in marker trajectories. The first step
is to freeze the joints of the model affected by the missing
marker (Freeze Affected Joint(s)). The motion capture frames
are then played forward until a marker reappears (Find
Next Possible Marker) in close proximity to the model. The



Fig. 4. Overview of how gaps in the raw data provided by the motion
capture system are handled.

only exception to this is when the marker belongs to an
intermediate segment (e.g., in the case of the hand perhaps
there is a marker on one of the proximal phalanges) along
the kinematic chain. In this case a visible marker at the end
of the kinematic chain (in our example at a distal phalange)
can drive the entire chain to realistic postures. Otherwise the
affected joints are held fixed until a new marker appears.
Once this happens the model is articulated towards this
marker using an Inverse Kinematic and Update Model step.
As long as the Euclidean distance error is below a threshold
(calculated as the average error from 3D motion capture
points to effector points on the model plus a small term) the
marker is accepted (Distance Threshold Exceeded step). In
many cases of appearing ghost markers, this ensures that the
model is not pulled into erroneous configurations. However,
we note that if a ghost marker appears in a kinematically
valid position, this will actuate the model in a way that does
not reflect the real motion.

If a marker is visible in frame t, disappears for n frames,
and re-appears in frame t+n+ 1, we determine the missing
joint angle values θt+1, . . . , θt+n for all involved joints by
smoothly interpolating the states between time t and t+n+
1 (Smoothly Interpolate Joint Angles step). A simple linear
interpolation of the boundary values θt and θt+n+1 would
lead to discontinuities in the angular velocity θ̇(t). We avoid
this and additionally minimize unnecessary oscillations by
finding a joint angle function θ(t) that interpolates the C1

boundary constraints θ and θ̇ at times t and t+ n+ 1 while
minimizing angular acceleration:

min
θ(t)

∫ t+n+1

t

(
θ̈(t)

)2
dt.

Because of the uniform time steps of the tracking system we
can safely discretize temporal derivatives by recursive finite
differences, such that finding the missing n joint angle values

Fig. 5. A virtual finger is shown as it moves through space and is bent.
In the second rendering the motion capture marker is no longer visible.
Once the marker reappears, inverse kinematics are computed in order to
verify that the posture is possible and then the intervening frames in which
the marker was missing can be updated using interpolation of the affected
joints.

leads to a simple n× n linear system to be solved.
If more than one marker is simultaneously missing then the

algorithm fills all gaps in a parallel fashion. Figure 5 shows
an example in which a marker disappears while the affected
finger is changing its position and posture simultaneously. In
this example the steps in which the joints are frozen up to
the decision that the reappearing marker is valid are omitted
and only the resulting smooth trajectory is shown. Small
differences between the model dimensions and the real hand
and slight errors from the motion capture system combine to
make it not always possible for the model effectors to exactly
reach the 3D motion capture positions. We note that larger
gaps can result in important articulation information being
lost. For example when the finger bends and straightens again
while a marker at its end is occluded.

IV. QUANTITATIVE EVALUATION

To test the effectiveness of our approach we used a dataset
of 1126 hand tracking trials, each of which lasted for 5
seconds and were captured at 200 FPS. They include motion
tracking data from 18 subjects who performed grasping
motions with a range of objects with various sizes and shapes
that could be grasped with a single hand. All subjects had 26
markers attached to their right hands and were tracked using
14 Vicon cameras in the Manual Intelligence Lab [28]. The
task was to grasp individual objects and place them in a
bowl and then return the hand to its starting position. Vicon
Nexus [29] was used to manually label the trials to facilitate a
comparison with our automatic technique. The raw unlabeled
marker data contained both ghost markers and gaps.

Figure 6 shows the difference between the average joint
angles of the hand model in the manually labeled and
automatically labeled conditions across all frames for each
trial. Note that the difference for each trial is calculated
by first subtracting all manually labeled joint angles over
all frames from all automatically labeled joint angles over
all frames. The absolute value of the resulting matrix is
then normalized by the number of frames and joint angles,
which results in the positive scalar values shown in the



Fig. 6. The average difference in degrees between 1126 manually labeled trials and the same trials processed using our automatic approach. The ROI
contains trials that had a higher than average number of mislabled markers in the manual labeling case and therefore resulted in larger differences between
both methods. The average angle trajectory for the highlighted red trial can be seen in Fig. 7.

graph. The mean angle difference across all trials is 0.085
degrees with a standard deviation of 0.12. We stress that the
distribution and order of the trials chosen is not relevant and
the criteria for choosing these particular trials was that they
were correctly labeled up to the end grasp posture. In the ROI
the relatively high differences can be explained by the fact
that some of these trials include parts of the experiment after
the end grasp when the reliability of the manually labeled
data deteriorates. Due to the extremely long time needed to
manually label the trials, labelers were told to concentrate
on labeling up to the end grasp and the final part of the trial
in which the hand returned to the starting position could
be ignored. This meant that in some cases mis-labellings
by the Nexus software were not corrected if they occurred
after this point. Figure 7 is a clear example in which this
occurs. Up to ROI-1 there is a perfect match (e.g, not only
do the average angles over frames align, but importantly the
actual absolute difference in joint angles over the frames is
0 or very close to 0) between our method and the manually
labeled case. However in ROI-1 the outputs differ and a less
smooth average angle trajectory is visible in the manually
labeled trial. A look at the data revealed this was indeed
caused by incorrect labeling. It is interesting to note that
even though the averaged joint angles align in ROI-2, the
postures are different. The averaged absolute value of the

difference of both sets of joint angles over the frames in this
part of the trajectory was approximately 3 degree (see the
plotted red line in Fig 7). To ensure that we do not penalise
our method by including the end of the trials which contain
poorly labeled data, we only match the first 500 frames of
the trials.

V. DISCUSSION

The development of this technique has effectively con-
signed the tedious and time consuming task of manually
labeling motion capture datasets to the past. Work that before
could take weeks or months can now be realized in a matter
of hours. It opens up the possibility of capturing much
larger quantities of human motions that can be used in a
variety of scenarios. For example, until now many robotic
researchers have had to turn to large simulated datasets such
as GraspIt! [30] to generate realistic hand postures on robot
platforms. While such resources are to be commended, it is
our belief that if real human motion is not used as input to
these datasets, important aspects of our evolved skill set will
remain unaccounted for. Within our research group it means
that we can quicken the pace towards endowing our anthro-
pomorphic robot hands with real human-like capabilities.

The gap handling (see Sect. III-C) procedure only works
in offline mode. In online mode our current approach is to
simply hold the affected joints frozen until a good candidate



Fig. 7. Average joint angle at each frame in both the manually labeled
and automatically labeled conditions for an exemplar trial (the highlighted
trial in Fig. 6). Also shown (in red) is the average joint angle difference per
frame between both methods.

marker reappears at which point IK are employed. We argue
that our approach not only reduces the time needed to process
motion capture data, but is potentially more accurate too. As
we use a model based IK approach, the tracked articulated
objects are restricted to realistic postures. This is in contrast
to some well known gap filling techniques such as spline fill,
which computes an interpolated spline in Euclidean space
R3, or pattern fill, which simply mimics the movement of a
selected neighbour marker.

In benchmark runs the online version of our method
achieved 75 FPS while tracking a single hand with 26
markers. Increasing the number of objects in the scene to two
hands (each with 13 markers) and three rigid objects (with a
total of 9 markers) the method slowed to 35 FPS. However,
if we turn off animation of the complex and detailed hand
model (which is done on the CPU) the FPS throughput of
the algorithm doubles. To improve performance further we
are investigating a GPU implementation.

In future work we will apply machine learning to the task
of predicting the position of occluded markers with data from
markers only seen by a single camera utilized to narrow the
search space. Also planned is the integration of physics based
models to add realistic collision detection and further ensure,
along with the existing joint limit avoidance contraints, that
unnatural configurations of models do not occur.
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[14] R. Y. Wang and J. Popović, “Real-time hand-tracking with a color
glove,” ACM Transactions on Graphics (TOG), vol. 28, no. 3, p. 63,
2009.
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