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Abstract. In order to effectively support motor learning in Virtual Re-
ality, real-time analysis of motor actions performed by the athlete is es-
sential. Most recent work in this area rather focuses on feedback strate-
gies, and not primarily on systematic analysis of the motor action to
be learnt. Aiming at a high-level understanding of the performed motor
action, we introduce a two-level approach. On the one hand, we focus
on a hierarchical motor performance analysis performed online in a VR
environment. On the other hand, we introduce an analysis of cognitive
representation as a complement for a thorough analysis of motor action.

1 Introduction

In recent years, several approaches to Virtual Reality (VR) motor learning have
been presented. For instance Rector et al. [3] introduced a virtual yoga coach for
visually impaired people. The authors followed a rule-based approach to define
desired yoga poses. Rules were extracted from literature and interviews with
experts. However, only desired optimal poses were specified, which did not take
into account a hierarchical representation of motion: only simple features (joint
angles calculated from joint positions) were considered. To analyze feedback
strategies, Sigrist et al. [6] conducted an experiment investigating the impact of
haptic, auditive, and visual feedback on motor learning using a VR rowing sim-
ulator. The simulator provides cues on performance, depending on temporal and
spatial deviations of the optimal oar blade movement. Here, only the resulting
motion of the oar is analyzed, not the actual motor performance of the athlete.
Another coaching system was developed by Tang et al. [7] with a focus on dance
training: Their analysis uses a block matching algorithm to compare the athlete’s
motion in terms of joint angles to pre-recorded optimal performances. Thus,
a comparison of online movement and the desired optimal movement is possible
without having to define any rule by hand. However, the system does not respect
multi-layer representations, e.g., typical error patterns: It only determines which
type of dance movement is executed and then calculates an accumulated error
value for the performance. No fine grained analysis and interpretation of non-
optimal parts of the performance is done.

Overall, these approaches perform analysis of motor actions with respect to
only a subset of particular aspects of motor actions: Often only simple features



of the motion (e.g., joint angles) are considered and other important features like
speed etc. cannot be integrated into the model. As a detailed analysis is helpful
for further steps, e.g., giving helpful feedback, this is one of the gaps we aim to
diminish in this work: We develop a suitable representation and analysis of (a)
online motor performance, but also with respect to (b) an offline aquisition of
the athlete’s cognitive representation of the of the action as presented in [4]. In
our scenario, an athlete, who is tracked by an OptiTrack Primel3W system, is
placed inside a two-sided CAVE (stereo projection area on floor and front). Here,
she has to perform a motor action (e.g., squats) in front of a virtual mirror. The
mirror reflects the athlete’s motion mapped on a virtual avatar. As exemplary
actions we use squat performances. The approaches discussed in the following
can also be extended to further types of motor actions.

2 Methodology and Realization

Analysis of Motor Performance: Our real-time performance analysis is able to
combine an extendable set of features into a hierarchical representation. It is
based on rules that describe the desired motion. This kind of analysis is highly
efficient and allows a direct interpretation of the results in terms of performance
flaws. Motion tracked by the OptiTrack system is transferred to our framework,
where we represent it as a temporal sequence of a set of features (this could
be, e.g., joint angles, positions, symmetry etc.). These features can be calculated
using the raw motion capture data. The sequence is split into single repetitions of
motor actions (e.g., squats), connected by arbitrary transition movements. Each
repetition is a combination of simpler sub-actions, denoted Movement Primitives
(MP). This could be, e.g., the going-down and the going-up stages during a
squat. Also, additional MPs, like an is-down stage, can be defined if required
for the performance analysis. For each type of action and MP, a list of relevant
features is manually specified. Then, key-postures for the MPs are defined using
manual analysis of recorded video and/or tracking data. For the squat, this can
be performed — among others — via observing symmetric key angles of knees.
To detect a single action, the system has to detect a posture similar enough
to one of these key-postures. The analyzer is a state machine: As soon as a
posture similar enough to a key-posture describing a valid state transition is
detected, the analyzer switches its state and waits for the next key-posture.
If the observed motion frame does not belong to the current state nor to an
allowed state transition, the system returns to the starting state: The performed
movement does not depict any known action/MP or the performance has been
aborted. The state of the analyzer reflects the current action and MP (see Figure
1). This representation has the advantage to allow focusing on style patterns on
an extensible feature set which are especially relevant for single parts of the
action.

To detect erroneous performances, a list of Prototypical Style Patterns (PSP)
is defined for every action, describing movement styles considered as undesired.
A PSP is defined using at least one rule, which describes, e.g., the violation
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Fig. 1. State machine used to determine current action and Movement Primitive.

Fig. 2. The athlete is in the Is-Down-Stage. Here, he did not yet reach optimal depth
(marked in red). During going down, PSP “Straight Back” was violated.

of specified feature constraints. Each rule returns a quantitative error value for
the incoming motion. PSPs and rules are developed based on literature and
information received from experts. Here, also observations from recorded data of
correctly or incorrectly performed actions were taken into account. One example
for a PSP in the context of squat is, e.g., “Incorrect Weight Distribution”: One
indicator for this pattern is that the knees are in front of the toes. Furthermore,
this pattern can be detected via observing the angle of the shin or the ankle.
Also using center of mass of upper and lower body may be conceivable. Finally,
the highest level of this hierarchical motion representation is the action. Lower
levels are the MPs and PSPs, and the lowest level are the features itself, e.g.,
joint angles, speed or positions at a given time. For a typical setup, our analysis
needs approximately 1ms per motion frame. Figure 2 shows the system in action.

Analysis of Cognitive Representation: Analysis of cognitive representation is
performed using structural-dimensional analysis (SDA-M) including a splitting
task of a given set of basic action concepts (BACs), a hierarchical cluster analysis,
and an analysis of invariance [4]. As such, this method provides psychometric
data regarding the relations and groupings of BACs of a complex action (here:
the squat) in long-term memory. For instance, the BACs “straight posture” and
“feet shoulder-width” functionally relate to the preparatory phase of the squat,
while the BACs “move bottom backwards” and “bend legs” functionally relate to
the main phase. By determining the degree of BAC order formation in memory
(i.e., relation of BACs in terms of functional movement phases), we can derive
information both on the skill level of the athlete (cf. [5]) as well as on the athlete’s
progress of learning (cf. [1]). In addition, errors can be inferred by comparing an
athlete’s representation to a reference, e.g., an expert representation.



3 Discussion and Perspective

This paper presented a multi-level analysis of motor actions as a basis for an
intelligent coaching space in the field of motor learning. We started with our on-
line analysis of motor performance followed by an offline analysis of the athlete’s
cognitive representation. The online analysis of motor performance is highly effi-
cient and easily interpretable. While Rector et al. [3] already successfully applied
a rule-based approach to detect desired joint angles, our approach goes beyond:
We respect the hierarchical properties of motion and allow considering a nearly
arbitrary and extendable set of features. Thus we do not only wait for desired
angles and return the current deviation, but we provide an online interpreta-
tion of performed erroneous motion in terms of style pattern. The analysis of
the cognitive representation serves as a second source of information in order
to learn about the individuals perceptual cognitive prerequisites for subsequent
feedback and coaching strategies. As such, the cognitive analysis adds an addi-
tional high-level layer to the hierarchy, built-on by the online analysis of motor
performance. In addition, coupling PSPs from motor performance analysis with
groupings and relations of BACs from the analysis of the athlete’s cognitive
representation allows to link the level of cognitive representation to the level of
motor performance [2]. Our next steps aim at investigating the potential of this
combination as a basis for VR coaching.
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