
Non-Negative Kernel Sparse Coding
for the Analysis of Motion Data

Babak Hosseini Felix Hülsmann Mario Botsch
Barbara Hammer

CITEC centre of excellence, Bielefeld University, Germany

Preprint of the publication [1], as provided by the authors.

The final publication is available at Springer via

http://dx.doi.org/10.1007/978-3-319-44781-0_60

Abstract

We are interested in a decomposition of motion data into a sparse
linear combination of base functions which enable efficient data processing.
We combine two prominent frameworks: dynamic time warping (DTW),
which offers particularly successful pairwise motion data comparison, and
sparse coding (SC), which enables an automatic decomposition of vectorial
data into a sparse linear combination of base vectors. We enhance SC
via efficient kernelization which extends its application domain to general
similarity data such as offered by DTW, and its restriction to non-negative
linear representations of signals and base vectors in order to guarantee a
meaningful dictionary. We also implemented the proposed method in a
classification framework and evaluated its performance on various motion
capture benchmark data sets.

Keywords: Kernel sparse coding, motion analysis, classification, inter-
pretable models, dynamic time warping.

1 Introduction

Ubiquitous sensors such as Microsoft’s Kinect, video cameras, and motion cap-
ture systems cause an increasing availability of human motion data as digital
signals. However, it remains a challenge how to automate semantic search in
motion data bases, unless such data are labeled manually. In this contribution
we investigate in how far natural priors such as sparsity allow an automatic
extraction of semantically meaningful entities based on the given data alone.

We hypothesize that semantics is mirrored by recurring signals, which are
present in semantically similar motion data, and it is possible to infer such
signals from given data based on their property that they allow a particularly
efficient description of the signals. We will rely on two techniques which have
proven successful in such settings: 1) Dynamic Time Warping (DTW) that en-
ables an efficient grouping of time series of different lengths according to their

1

http://dx.doi.org/10.1007/978-3-319-44781-0_60

Preprint of the publication [1], as provided by the authors. 2

semantic similarity, incorporating invariance to small temporal shift and distor-
tion [2]. 2) Sparse Coding (SC), which extracts a dictionary from a given data
set and enables a sparse linear representation of the signals based thereon [3].
The resulting dictionary elements constitute an interface based on which seman-
tic search becomes possible: signals which decompose into the same dictionary
elements have a large semantic overlap.

Classical SC deals with vectorial data. To combine it with DTW, we will
resort to a kernel version of SC [4]. Several approaches apply SC for motion
data, but they provide unreasonable base functions and linear combinations due
to negative coefficients [5]. We will extend kernel SC to a non-negative version,
and we will demonstrate its accuracy for various motion capture benchmark
data sets.

2 Non Negative Kernel Sparse Coding

Sparse coding for vectorial data represents every measurement yi from a set of
measurements via a sparse representation yi = Dxi with a dictionary matrix D
of basic primitives, which are shared by all measurements, and sparse coefficients
xi, which describe how the observation yi is generated by the basic primitives.
In our setting, we deal with motion data instead, i.e. data are given as time-
series Y i = (yi(1)...yi(T)) ∈ (Rn)∗ of possibly varying length T . We assume
that a kernel is given for such time series (such as the DTW kernel), denoted
as K(Y i, Y j) = Φ(Y i)>Φ(Y j) with feature map Φ. In the feature space, sparse
coding problem becomes Φ(Y i) = Φ(D)xi, where Φ(D) is the dictionary matrix
in the feature space.

Usually, the feature map Φ is not available, hence this problem cannot be
solved directly. We follow the approach as proposed in [4]: we choose the dictio-
nary as linear combinations of data Φ(D) = Φ(Y)A with coefficient matrix A.
Often, A is chosen as an unconstrained matrix. However, we are interested in
semantically meaningful features, i.e. dictionary elements should have the char-
acteristics of motion signals and they should act as representatives for different
motion groups. For this reason, we impose two constraints on A and xi: The
coefficient vector xi, in addition to its sparseness, must be non-negative, such
that motion signals are constructed from the dictionary elements as a meaning-
ful mixtures of motions. For the same reason, the coefficient matrix A must be
non negative, and the formation of meaningful groups of dictionaries is enforced
by the sparsity of A by minimizing its L1 norm. Hence sparse coding becomes
the following optimization problem, where Y refers to all observed sequences
and X to its respective matrix of coefficients:

min
X,A

‖Φ(Y)− Φ(Y)AX‖2F + λ‖A‖21
s.t ‖Xi‖0 ≤ T, aij ≥ 0, xij ≥ 0 ∀i, j

(1)

T limits the sparsity of the resulting SC. In order to solve this optimization
problem (Eq.1), we use alternating optimization of the sparse coefficients and the
dictionary. These two steps are realized by “Non-Negative Kernel Orthogonal
Matching Pursuit (NNKOMP)” and “Non-Negative Kernel dictionary learning”,
described subsequently.

Preprint of the publication [1], as provided by the authors. 3

2.1 Non-Negative Kernel OMP

KNNOMP optimizes the coefficients X in (Eq.1) assuming a fixed dictionary
characterized by coefficients A. NNKOMP is based on the kernel OMP algo-
rithm as proposed in [4], but enforcing non-negativity of the components. For
this purpose, when adding non-zero coefficients in a greedy way in the kernel
OMP, dictionary atoms with maximum positive correlation to the remaining
residual error are selected. After selecting a new non-zero component based,
coefficients Xi are optimized by the Non-negative least square algorithm (K-
NNLS).

min
Xi

‖Φ(Yi)− Φ(Y)AXi‖22 s.t Xi ≥ 0, ‖Xi‖0 ≤ T (2)

For the K-NNLS method we use the active set “lsqnonneg” optimization al-
gorithm from [6], and we kernelize the parts that calculate the intermediate
solution pointand the gradient based on the variables selected in the passive
set. As a result, the output of the K-NNLS would be used as the solution in
the intermediate step of the NNKOMP algorithm.

2.2 Non-negative dictionary update

As the second part of our algorithm, we want to find the best dictionary Φ(Y)A
which minimizes (Eq.1) while using the obtained coefficients X as the output
of NNKOMP in the previous section. Based on [4], the error function ‖Φ(Y)−
Φ(Y)AX‖2F can be re-formulated as:

‖Φ(Y)Ej − Φ(Y)AjX
j‖2F ; Ej = (I−

∑
i 6=j

AiX
i) (3)

Φ(Y)Ej is the reconstruction error using all the dictionary columns except Aj

and along with corresponding coefficients X which were estimated by NNKMOP.
Therefore, the dictionary can be updated through solving the (Eq.3) for each
Aj . As an important constraint we have to take into account that the optimal
dictionary should be used along with non-negative coefficients X. Accordingly
we formulate (Eq.3) as the following alternating optimization set:

min
Xj
‖Φ(Y)Ej − Φ(Y)AjX

j‖2F s.t Xj ≥ 0 (4)

min
Aj

‖Φ(Y)Ej − Φ(Y)AjX
j‖2F + λ‖Aj‖21 s.t Aj ≥ 0 (5)

In order to solve (Eq.4), we used the large-scale non-negative least squares
algorithm from [7] which can be easily extended to a kernel version that fits to
(Eq.4).

2.2.1 NN-Kernel FISTA:

In order to solve the optimization problem in (Eq.5), we devised the non-
negative kernel FISTA algorithm (NN-K-FISTA) which is a combination of the
projected gradient technique [8] and the Shrinkage-Thresholding method [9].
We kernelize [9], by calculating f(Aj) and ∇f(a) for the objective function

Preprint of the publication [1], as provided by the authors. 4

f based on the Mercer kernel’s inner product property; the shrinkage func-
tion is substituted with τl(x) = (x − l)(sgn(x − l) + 1)/2. As the last step in
the dictionary update part, we normalize the dictionary coefficients such that
‖Φ(Y)Aj‖22 = 1.

2.3 Label Consistent NN-KSC classifier

The proposed non-negative kernel sparse coding framework will be used as a
semantic encoding scheme for the observed motion data. In addition, we will
evaluate the ability to base a classifier on top of the proposed coding scheme,
as follows: We extend the label-consistent sparse coding as proposed in [10, 11].
In the latter, kernelized KSVD has been used. We assume a labeling is present,
H is the label matrix of training data where H(i, j) = 1 if Yj is contained in
class i. In addition, we choose the matrix Q such that Qj = Qi if {Yj ,Yi} are
in the same class. The objective of sparse coding is now extended to enforce
that coefficients Xi and Xj are similar for data in the same class, weighted by
α. Further, base functions tend to accumulate coefficients for exemplars of one
class, weighted by β.

min
X,A

‖Φ(Y)− Φ(Y)AX‖2F + α‖Q−QAX‖2F + β‖H−HAX‖2F + λ‖A‖21
s.t ‖Xi‖0 ≤ T, aij ≥ 0, xij ≥ 0, ∀i, j

(6)
The optimization of this objective relates to a change of the kernel matrix as

K̃(Yi,Yi) = K(Yi,Yj)+α〈Qi,Qj〉+β〈Hi,Hj〉. Using the new K̃ as the kernel
function, (Eq.6) can be solved by the proposed NNKSC algorithm. The parame-
ters α and β control the trade-off between the reconstruction error and the clas-
sification accuracy. After optimizing the dictionary matrix A, the NNKOMP
(Eq.2) can be used to find sparse codes X. This induces a labeling of the data
via li = argmaxj |H(·, j)AXi|.
Furthermore, we are interested in having each column of A related to only one
class of data. Doing so, we can partition A into separate class-specific dictionar-
ies which will result in having specific prototypes and dictionary for each class
of data. Therefore, in NN-K-FISTA algorithm the shrinkage-Threshold will be
applied to only those elements of Aj related to data from classes with lower
contributions in Aj (via updating the value of HAj after (Eq.4)).

3 Datasets and Experiments

In this section we compare the proposed LC-NNKSC algorithm with other base-
lines on a few benchmarks. All datasets carry motion signals. Hence, first, we
use the DTW algorithm to calculate a distance matrix D for the given sam-
ples. This is converted to a similarity matrix K using the Gaussian kernel

K(x, y) = exp(−‖x−y‖
2

σ). A valid Gram matrix results therefor by setting all
its negative eigenvalues to zero (clipping). For the comparison, we choose the
following methods:
LC-K-KSVD: We use a classification based on Kernel KSVD which has been
proposed in [11]; this approach is closely related to the proposed NNKSC as
regards its overall structure and objective.

Preprint of the publication [1], as provided by the authors. 5

kNN: We use the k-Nearest Neighbor classifier (k = 3) as a base line example,
with which we classify the data samples based on the pairwise DTW distances.
Kernel-Kmeans: As another similar kernel based method, we apply the Kernel
K-means clustering [12] to find m (equal to size of dictionary A) cluster pro-
totypes. Afterward, the distance of each validation data Yi to all prototypes
would be calculated as Di = diag(E>K(Y, Y)E) − 2K(Yi, Y)E + K(Yi,Yi),
where E is the normalized cluster assignment matrix based on [12]. After pass-
ing D into a Gaussian function to convert it to a normalized similarity matrix
and keeping the first T biggest elements for each data, the result has a similar
structure to X in the NNKSC algorithm. Then we feed the coefficients into a
multi-class linear SVM in order to classify the validation data.
Affinity Propagation: We chose Affinity Propagation algorithm [13] as an ap-
proach which selects prototypes from the data samples in a clustering manner.
There, the gram matrix would be used as the similarity matrix, and the class
labels of validation data would be determined based on the closest neighboring
prototype to each data sample.
Kernel PCA: As the last method for the comparison, we use the kernel-PCA
approach from [14] to project the DTW based gram matrix K into M dimension
space resulting in data vectors X. We apply a multi-class linear SVM to classify
the generated data vectors.

In order to prevent local optima, for each method, we repeat the same ex-
periment with 10 different initial points (or initial dictionaries) and we choose
the one with the best result for the comparison.

3.1 Evaluation Criteria

Classification: We measure the correct classification rate as the first metric
to evaluate the performance of the algorithms. Each dataset is randomly split
into train, test and the validation parts with 50%, 25% and 25% number of data
respectively, and the learning process of the dictionary is stopped according to
the increases in error curve of the test data. Finally, the classification accuracy
and other measures are calculated based on the validation data.
Reconstruction error: Among the utilized methods, only LC-NNKSC and
LC-KKSVD belong to a sparse coding framework and provide a reconstruction
error (Eq.2) as a measure of their accuracy in a sparse representation of the
data.
Class based sparsity: In addition, because another important concern of our
framework is to provide sparse representation for the data, we also consider the
level of sparseness for the coefficients X. So in order to measure the sparseness in
the classification framework we consider SPi as the number of non-zero elements
in

∑
k∈Classi

|Xk| for each class of the data, and we present the best and the worst

SPi for each algorithm.
Dictionary sparseness: Furthermore, to study the dictionary interpretability,
we calculate the relevance of each dictionary atom dj to the data classes. We
can find the contribution of each data class in Dj via c = HAi where H is the
class label matrix as in (Eq.6). Then the dictionary sparseness is measured as
DS = cx/

∑
ck where cx is the biggest element in c.

Preprint of the publication [1], as provided by the authors. 6

3.2 Datasets

CMU Motion Dataset: We use the Human motion capture dataset from the
CMU graphics laboratory [15], which was captured by aVicon infra-red system.
We combined the movement data of subject 86 from the dataset which is a com-
bination of 9 different types of human movements such as “walking”,”running”,
“clapping”,... . Then the data is segmented in order to brake down the long
movements into smaller segments as single periods of each type of motion. Con-
sequently, we obtain 9 classes of data with 10 sample per class, and for imple-
menting LC-NNKSC we used α = 1 and β = 5.
Cricket Umpire’s Signals: For our classification experiment we use Cricket
Umpire’s Signal data provided in [16]. This dataset contains 180 sample of data
from 12 different classes of umpire signals related to the cricket game. In order
to perform the sparse coding classification we choose α = 0.5 and β = 1.
Articulatory Words: The articulatory words dataset is the facial (ex. lips
and tongue) movement signals captured via EMA sensors [17]. The dataset is
used to categorize 25 classes of different words uttered by the subjects in total
575 sample of data. For this dataset we choose α = 0.2 and β = 0.5.
Squat dataset: The squat dataset is gathered in our institute as a part of the
large-scale intelligent coaching project. The data is a set of squat movements
performed by three sport coaches while being captured by the optical MOCAP
system [18]. Each squat is segmented into three movement primitives ”prepa-
ration”, ”going down” and ”comming up”, which generates 87 sample of data
and 9 class labels together with the coach labels. Classification of this dataset
is performed while using 1 and 0.2 as the α and β respectively.

3.3 Classification Results

For all the 4 dataset we choose the number of dictionary elements Ai as twice
as the number of total classes. As a rule of thumb, we assume the data in each
class can be reconstructed with a low error using only 2 atoms related to that
class. We use the same value as the number of prototypes and the mapping
dimension in K-Kmeans and K-PCA respectively. Also for the NNKSC and
the LC-KKSVD algorithms we choose the sparsity limit T = 4 to see how the
algorithm is going to use these 2 additional redundancy levels for the dictionary
learning and the reconstruction.
In Table.1, the classification result are provided. We can see that for all datasets

the proposed algorithm achieved the highest classification accuracy among the
evaluated methods; however for Cricket and Words datasets the LC-KKSVD
provided similar accuracy rates to LC-NNKSC (83.33 % and 97.33 %) while
having smaller reconstruction errors due to the non-negative restrictions. Also
in some of the datasets, the affinity propagation and the kNN managed to ob-
tain performance levels equal to the proposed method, for example both have
100 % classification accuracy for CMU dataset; nevertheless they do not pro-
vide any reconstruction model for the data in comparison to the sparse coding
framework.
Table.2 brings the the sparsity analysis of the results, as the best and the worst
measures (bDS, wDS) for the relevance of dictionary elements to the classes,
as well as the best and worst number of class based sparsity (bSP, bSP). Ac-

Preprint of the publication [1], as provided by the authors. 7

Table 1: Classification accuracy(%) and the reconstruction error (%) from ap-
plying the selected methods on the chosen datasets

CMU Cricket Signals Articulatory Words Squat

Acc Rec. Err Acc Rec. Err Acc Rec. Err Acc Rec. Err

LC-NNKSC 90.91 4.17 83.33 11.07 97.33 14.52 100 0.14

LC-KKSVD 86.36 7.44 83.33 10.1 97.33 7.8 85 3.4

K-Means+SVM 68 – 56.25 – 90 – 81 –

Affinity P. 90.1 – 68.75 – 92 – 100 –

K-PCA+SVM 50 – 56.25 – 60.66 – 37 –

kNN 86.36 – 79.16 – 96.66 – 100 –

Table 2: The best and worst class based sparseness (bSP and wSP), and the
best and worst dictionary sparseness (bDS(%) and wDS(%)) for the different
selected approaches

CMU Cricket Signals Articulatory Words Squat dataset

bSP wSP bDS wDS bSP wSP bDS wDS bSP wSP bDS wDS bSP wSP bDS wDS

LC-NNKSC 1 2 100 100 1 4 100 100 1 3 100 98.1 1 1 100 100

LC-KKSVD 5 9 100 76 5 13 100 44 5 16 100 56 3 8 100 87

Affinity P. 4 6 – – 6 4 – – 5 11 – – 4 5 – –

K-Means 4 17 100 50 5 27 100 16 5 50 100 50 4 12 100 60

cording to the table.2, LC-NNKSC provide models for the datasets with better
sparseness regarding both the dictionary atoms and the class data reconstruc-
tion. For all datasets, it defines each dictionary atom using the data of a single
class which results in almost 100 % dictionary sparseness. For the squat data
the algorithm managed to reconstruct the data of each class using only one spe-
cific atom (wSP=bSP=1), meaning that only half of the dictionary is needed
to model this data with NNKSC. Also, due to the value of wSP in Cricket and
Words data (4 and 3 respectively), apparently there exist classes which require
more than 2 dictionary atoms to be reconstructed and categorized efficiently.
The LC-KKSVD too has a high classification accuracy for Cricket and Words
data, but this performance is lower than Affinity Propagation in the other 2
datasets. Furthermore, from the sparseness point of view, it is outperformed
even by Affinity propagation by providing lower class based sparsity.

4 Conclusion

In this paper we presented a non-negative kernel based sparse coding approach
for modeling and classification of motion data. According to the results, the non-
negative approach provides much sparser representation for the data comparing
to the conventional Kernel SC method, using fewer number of prototypes to re-
construct the motion signals. Additionally, where it is possible the LC-NNKSC
approach forces dictionary elements to be created using positive linear combina-

Preprint of the publication [1], as provided by the authors. 8

tion of data only from individual classes. Doing so, the obtained dictionary can
be easily broken down to class based dictionaries as separate prototype-based
models for each class of data. In addition these sub-dictionaries can be used
as a warm start in further classification tasks even when there is different com-
bination of classes. All together, the LC-NNKSC classifier provides dictionary
prototypes and sparse coefficients which are more class based consistent and
makes it possible to have individual models for reconstruction of each class of
data as well as for its classification.
Based on the strength of this method in constructing prototype based models
for the motion data, there is a considerable potential for future works on the
clustering and designing generative models of motion data using this framework
or its variants.

5 Acknowledgment

This research was supported by the Cluster of Excellence Cognitive Interaction
Technology ’CITEC’ (EXC 277) at Bielefeld University, which is funded by the
German Research Foundation (DFG).

References

[1] B. Hosseini, F. Hülsmann, M. Botsch, and B. Hammer, “Non-negative ker-
nel sparse coding for the analysis of motion data,” in International Con-
ference on Artificial Neural Networks. Springer, 2016, pp. 506–514.

[2] M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, and E. Keogh, “On the non-
trivial generalization of dynamic time warping to the multi-dimensional
case.” in SDM, 2015.

[3] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for de-
signing overcomplete dictionaries for sparse representation,” IEEE Trans-
actions on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[4] H. Van Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa, “Design
of non-linear kernel dictionaries for object recognition,” IEEE Transactions
on Image Processing, vol. 22, no. 12, pp. 5123–5135, 2013.

[5] T. Kim, G. Shakhnarovich, and R. Urtasun, “Sparse coding for learning in-
terpretable spatio-temporal primitives,” in Advances in neural information
processing systems, 2010, pp. 1117–1125.

[6] L. Shure, “Brief history of nonnegative least squares in matlab,” Blog avail-
able at: http://blogs. mathworks. com/loren, 2006.

[7] H. V. B. Mark and R. K. Michael, “Fast algorithm for the solution of
large-scale non-negativity-constrained least squares problems,” Journal of
Chemometrics, vol. 18, no. 10, pp. 441–450, 2004. [Online]. Available:
http://dx.doi.org/10.1002/cem.889

http://dx.doi.org/10.1002/cem.889

Preprint of the publication [1], as provided by the authors. 9

[8] C.-J. Lin, “Projected gradient methods for nonnegative matrix factoriza-
tion,” Neural computation, vol. 19, no. 10, pp. 2756–2779, 2007.

[9] A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Al-
gorithm for Linear Inverse Problems,” Society, vol. 2, no. 1, pp. 183–202,
2009.

[10] Z. Jiang, Z. Lin, and L. S. Davis, “Label consistent k-svd: Learning a
discriminative dictionary for recognition,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 35, no. 11, pp. 2651–2664, 2013.

[11] Z. Chen, W. Zuo, Q. Hu, and L. Lin, “Kernel sparse representation for
time series classification,” Information Sciences, vol. 292, pp. 15–26, 2015.

[12] J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern analysis.
Cambridge university press, 2004.

[13] R. Guan, X. Shi, M. Marchese, C. Yang, and Y. Liang, “Text clustering
with seeds affinity propagation,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 23, no. 4, pp. 627–637, 2011.

[14] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal component
analysis,” in Artificial Neural NetworksICANN’97. Springer, 1997, pp.
583–588.

[15] Carnegie-Mellon mocap database, Carnegie Mellon Univ. Std., Mar. 2007.
[Online]. Available: http://mocap.cs.cmu.edu/

[16] M. H. Ko, G. West, S. Venkatesh, and M. Kumar, “Online context recog-
nition in multisensor systems using dynamic time warping,” in Intelligent
Sensors, Sensor Networks and Information Processing Conference, 2005.
Proceedings of the 2005 International Conference on. IEEE, 2005, pp.
283–288.

[17] J. Wang, A. Samal, and J. R. Green, “Preliminary test of a real-time,
interactive silent speech interface based on electromagnetic articulograph,”
2014.

[18] T. Waltemate, F. Hülsmann, T. Pfeiffer, S. Kopp, and M. Botsch, “Re-
alizing a low-latency virtual reality environment for motor learning,” in
Proceedings of the 21st ACM Symposium on Virtual Reality Software and
Technology. ACM, 2015, pp. 139–147.

http://mocap.cs.cmu.edu/

Preprint of the publication [1], as provided by the authors. 10

6 Appindex

6.1 Kernel Non-Negative OMP

Fig.6.1 presents our proposed NNKOMP algorithm.

Task: Solving minx‖Φ(z)− Φ(Y)Axi‖22 with xi ≥ 0 and ‖~xi‖0 ≤ T
Input: Data sample z, dictionary coefficient A, sparseness limit T, kernel

K
Output: non-negative sparse code x with T non-zero elements
Initialization: x = 0, I = 0
Loop:

1 τi = max([K(z, Y)−AIxK(Y, Y)]ai , 0), ∀i 6∈ I ;
2 imax = arg maxi|τi|, ∀i 6∈ I ;
3 I = I ∪ imax ;
4 Solving minx‖Φ(z)− Φ(Y)AIx‖22 s.t x ≥ 0 using KNNLS;
5 Stop if ‖x‖0 = T , otherwise go to step 1 ;

Figure 1: The KNNOMP algorithm

To kernelize the Non-Negative LS method from [6], we changed the parts
that calculate the intermediate solution point sP and the gradient w as in Eq.7,
where APIs is related to the variables selected in the passive set P . As a result,
the output of the K-NNLS would be used as the solution xs in step 4 of the
algorithm in Fig.6.1.

sP = [(APIs)>K(Y, Y)APIs]−1(APIs)>K(z, Y)>b
w = A>Is [K(z, Y)> −K(Y, Y)AIsx]

(7)

6.2 NN-Kernel FISTA:

Our proposed NN-K-FISTA algorithm is shown in (Fig.6.2).

Task: Solving minaf(a) + ‖a‖21 s.t a ≥ 0
Input: function f(a,K, E), λ
Output: non-negative sparse dictionary atom a which fits into (Eq.5)
Initialization: k = 0, t = 1, 0 < η < 1, 0 < α, δ
Step K: (k ≥ 1) , find the first possible i ∈ N such that with

αk = ηiαk−1:
1 ak+1 = ταkλ(ak − αk∇f(ak));

2 f(ak+1)− f(ak) > (ak+1 − ak)∇f(ak)− ‖ak+1 − ak‖22/(2α) ;

3 tk+1 = (1 +
√

1 + 4t2k)/2 ;

4 Stop if f(ak+1) < δ, otherwise ak+1 = ak+1 + (ak+1 − ak)(tk − 1)/tk+1

Figure 2: The NNK-FISTA algorithm

Preprint of the publication [1], as provided by the authors. 11

In this algorithm f(aj), ∇f(a) and τα(x) would be calculated as:

‖Φ(Y)Ej − Φ(Y)ajx
j
R‖2F = tr(Ej − ajxjR)>K(Y, Y)(Ej − ajxjR))

∇f(aj) = −2K(Y, Y)(Ej − ajxjR)xjR
>

τl(x) = (x− l)(sign(x− l) + 1)/2

(8)

The dictionary atoms aj will be normalized as:

aj = aj/
√
a>j K(Y, Y)aj , xjR = xjR

√
a>j K(Y, Y)aj (9)

	Introduction
	Non Negative Kernel Sparse Coding
	Non-Negative Kernel OMP
	Non-negative dictionary update
	NN-Kernel FISTA:

	Label Consistent NN-KSC classifier

	Datasets and Experiments
	Evaluation Criteria
	Datasets
	Classification Results

	Conclusion
	Acknowledgment
	Appindex
	Kernel Non-Negative OMP
	NN-Kernel FISTA:

