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Abstract

We present a bidirectional facial reconstruction method for estimating the skull given a scan of the skin surface and vice versa
estimating the skin surface given the skull. Our approach is based on a multilinear model that describes the correlation between
the skull and the facial soft tissue thickness (FSTT) on the one hand and the head/face surface geometry on the other hand.
Training this model requires to densely sample the Cartesian product space of skull shape times FSTT variation, which cannot
be obtained by measurements alone. We generate this data by enriching measured data—volumetric computed tomography
scans and 3D surface scans of the head—by simulating statistically plausible FSTT variations. We demonstrate the versatility
of our novel multilinear model by estimating faces from given skulls as well as skulls from given faces within just a couple of
seconds. To foster further research in this direction, we will make our multilinear model publicly available.

1. Introduction

The face constitutes a rather unique characteristic of our visual ap-
pearance and our identity. Its shape is mainly determined by the
geometry of the underlying skull and the distribution of facial soft
tissue on top of the bony structure. A better understanding—and an
efficient computation model—of the relation of facial skin (head),
the underlying bony structures (skull), and the facial soft tissue
thickness (FSTT) will bring forward a wide range of applications.

For instance, an important topic in forensic medicine and anthro-
pology is facial reconstruction from skeleton remains: By providing
a human skull and several FSTT options, the goal is to reconstruct
plausible facial appearances to enable recognition of the unknown
subject. The other way around, i.e., deriving the skull from the face,
also has high-potential applications. In a medical context, this tech-
nology can estimate the skull of a person based on a 3D face-scan
only—without the need for X-radiation or other expensive medi-
cal imaging methods. A reasonably accurate radiation-free alterna-
tive will be beneficial, e.g., for patients with craniofacial malfor-
mations, where Computed Tomography (CT) is the standard imag-
ing procedure [CHP03]. Another application is radiation-free bony
cephalometric skull assessment in orthodontics, where often both
the skull and face shape are of interest and a high radiation dose is
prohibitive due to the typically young age of the patients [Eur04].

While there are several approaches for facial reconstruction
based on skull remains, we are not aware of any work that re-
constructs accurate skull geometry from 3D face scans. Both prob-

lems are challenging and have to be regularized by statistical priors
from medical imaging data. However, building a dense and accu-
rate model of the correlation between skull, FSTT, and facial skin
requires training data that sufficiently samples the Cartesian prod-
uct space of skull shape times FSTT variation. Even with a large
number of CT scans this is intractable, since it would require mea-
surements of the same individual at several tissue thickness states.

In this paper, we present such a combined statistical model and
make it publicly available for research purposes. We employ a mul-
tilinear model that maps from skull shape and FSTT—both rep-
resented in low-dimensional parameter spaces—to high-resolution
triangle meshes of the skull and the head/facial skin. Varying just
the skull parameters generates geometries of different individuals
all sharing the same FSTT. Varying the FSTT parameters allows
simulating weight changes of a particular individual. Thanks to its
multilinear nature our model can be evaluated as well as fitted in
just a couple of seconds, allowing us to produce skull and skin vari-
ations from given skull shape and FSTT parameters, or to determine
these parameters by fitting the multilinear model to a given skull or
skin, measured, e.g., by medical imaging or a face scanner.

In order to train the multilinear model we build on our previ-
ous work [GBA∗18], where from a set of volumetric CT scans and
3D surface scans of heads/faces we constructed three individual
parametric models of skull shapes, head shapes, and FSTTs, re-
spectively, and thereby de-coupled these three models (Section 3).
In this paper, we first improve the FSTT representation and fitting
from [GBA∗18] by representing the FSTT as a sphere-mesh offset
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from the skull (Section 4.1). This allows us to generate high-quality
training data by computing face/head meshes from the Cartesian
product of variations of skull geometries and variations of FSTTs,
thereby effectively re-coupling the previously decoupled paramet-
ric models (Section 5.1). The resulting dense sampling of the prod-
uct space of skull and FSTT variations enables the construction of
a multilinear model (Section 5.2), which we can then fit to either
given skull scans or face scans in a unified manner (Section 5.3).
We show the versatility of our novel multilinear model and evaluate
its reconstruction accuracy by estimating faces from given skulls as
well as skulls from given faces (Section 6).

2. Related Work

Skull-based facial reconstruction traditionally relies on artists, who
manually model the unknown face using moldable substances and
FSTT statistics defined by a few predefined landmarks. Such meth-
ods have the inherent drawback that they are very time-consuming,
highly subjective and considered to be unreliable [Wil10]. To
get more reliable and statistically plausible facial estimates, vari-
ous computer-aided facial reconstruction methods have been pro-
posed [KHS03, TBK∗05, TBL∗07, RME∗14, SZD∗16, SZM∗17,
GBA∗18]. All of these methods are based on FSTT statistics gen-
erated with the help of modern 3D imaging techniques such as CT,
Magnetic Resonance Imaging (MRI), or Cone Beam Computed To-
mography (CBCT). All theses technologies enable high accuracy of
data acquisition [HCH∗15] and provide a solid basis for the collec-
tion of FSTT statistics.

By using modern 3D imaging techniques, FSTT statistics are
no longer limited to a few predefined landmarks, but can be gen-
erated as a dense soft tissue map covering the entire facial area.
Nevertheless, there are many approaches to facial reconstruction,
such as [KHS03] or [RME∗14], that use the FSTT in a few pre-
defined landmarks only. The missing data are either interpolated
between the landmarks or anatomical rules such as the location
of the anatomical planes and anatomical regressions regarding the
shape of the ears, nose, or mouth are used. Both methods result in
rather poor reconstruction results and need a lot of manual work.
Turner et al. [TBK∗05] proposed a template fitting approach for
automated skull registration and Tu et al. [TBL∗07] applied it
to a large CT database consisting of 280 individuals. Instead of
creating and using FSTT statistics, they rely on the geometry of
skulls and skin surfaces from the CT itself. Using principal com-
ponent analysis (PCA) they construct a face-space, that allows to
create a set of plausible reconstructions of a sought face. Shui et
al. [SZD∗16, SZM∗17] use a dense soft tissue map derived from
CT data. Given this dense soft tissue map, they fit a statistical head
model to the data and thereby provide an estimate of the visual ap-
pearance of the person to be reconstructed. Their method requires
some manual steps, such as pre-selecting landmarks on the skull, in
order to guide the coarse registration of the template, or the recon-
struction of mouth, eyes, and nose, which must be performed by a
forensic expert.

Recently, in [GBA∗18] we proposed a method for forensic facial
reconstruction using a parametric skull model, a parametric FSTT
model based on dense FSTT measurements, and a parametric head
model. This approach is fully automatic and allows the generation

of different plausible head variants utilizing the parametric FSTT
model. The current paper improves upon this previous work by re-
constructing not only faces from skulls, but also skulls from faces,
and by being computationally much more efficient thanks to the
proposed multilinear model of skull, FSTT, and head.

The other way around, i.e., reconstructing a skull from skin sur-
face data has a wide range of applications, especially in medicine,
but is still relatively unexplored. The common techniques for re-
constructing skulls with high precision are CT and MRI. To the
best of our knowledge there is currently no method that allows the
skull structure to be accurately estimated from a face scan alone.
A method for reconstructing a coarse approximation of the skull
based on the correlation between skin surface, FSTT at few land-
marks, and skull was presented in [BB14]. The authors estimate
the rigid head transformation in a facial performance by fitting a
simplified skull model to the animated face model. However, their
skull model is too simplified to be utilized for medical purposes.

Ali-Hamadi et al. [AHLG∗13] presented a semi-automatic
method for transferring a volumetric anatomical template model
(consisting of bones, muscles and viscera) to any target character.
To map the internal anatomy into the target character they manually
estimate the fat distribution and warp the template by Laplacian de-
formation, while satisfying additional constraints, e.g., that bones
must stay straight and symmetric across the sagittal plane. Even if
the reconstructed interior follows anatomical rules and gives visual
pleasing results, the focus of this approach is to transfer the model
to all kinds of targets, like animals or cartoon characters, and not
on precisely reconstructing the inner of a human body.

In [KIL∗16] a fully automated approach for reconstructing
physics-based anatomical models based on a tetrahedral template
mesh representing an average male was presented. To fit the tar-
get as closely as possible, the template model is warped through
symmetric as-rigid-as-possible deformation. The work focuses on
the reconstruction of large and medium anatomical details, leaving
out parts like hands, toes, and the face, which is the main compo-
nent of our current work. Another approach, presented by Ichim et
al. [IKNDP16] builds a volumetric face rig based on thickness mea-
surements from forensic studies and employs it for physics-based
animation. In [IKKP17] this approach was extended to include a
novel muscle activation model that separates active and passive soft
tissue layers. Again, all the above approaches are based on skull
models that are too simplified to be used for medical purposes.

3. Fundamental Models and Data

In order to generate training data for our multilinear model, i.e.,
pairs of skin surfaces and corresponding skulls, we follow the ap-
proach presented in [GBA∗18]. This section gives a brief overview
of the models and methods used to generate the training data
(see [GBA∗18] for more details).

Our aim is to generate three parametric models from CT data
describing skull, head, and FSTT variants. To build the paramet-
ric models, existing head CT scans (from four different devices)
were collected from the DICOM database of the PACS system of
the University Medical Center Mainz. The local ethical approval
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(a) (b) (c)

Figure 1: Adding facial tissue, specified by FSTT distribution,
onto a given skull: (a) Union-of-Spheres from [GBA∗18], (b)
sphere-mesh based on unoptimized radii with dent-like artifacts,
(c) smooth sphere-mesh based on optimized radii.

board [Eth] has approved the processing of the pseudonymized ex-
isting CTs to generate the statistical models under the approval
number No 837.244.15 (10012) (date: 05.08.2015).

To generate the different parametric models, we only used CT
scans that meet the criteria that a) the facial skull of the patient is
completely imaged, b) the slice thickness is less than or equal to
1 mm and c) the subject has neither significant oral or maxillofa-
cial deformations nor missing parts. Three different types of data
were used to generate the proposed multilinear model. 1) 56 skulls
extracted from CT scans to generate a parametric skull model, 2)
78 heads (39 extracted skin surfaces from CT scans and 39 heads
from 3D surface scans) to generate a parametric head model, and 3)
39 corresponding skin surfaces and skulls extracted from CT scans
to generate a parametric FSTT model. In addition, 5 pairs of skin
surfaces and skulls from CT scans are used for evaluation and are
therefore not included in building the parametric models.

From the collected CT data, we automatically extracted cleaned
polygonal meshes of the skin surfaces and skulls. This automatic
step includes cropping each CT to a volume of interest, extract-
ing the skin surface and skull using Marching Cubes [LC87] and
removing unwanted parts such as soft tissue structure (respiratory
tract, ear canal) in case of the skin surface and the spine or internal
bone structures in case of the skull. The 39 skin surfaces extracted
from CT were finally supplemented by 39 high-quality optical 3D
head scans. The resulting 56 skulls and 78 skin surfaces are aligned
in a common reference frame by fitting a template skull or template
head to each mesh individually. This fitting process is based on a
similarity transformation followed by a fine-scale deformation step.
By applying PCA to the fitted skulls and the fitted skin surfaces, we
generate parametric models for the skull consisting of a tetrahedral
mesh with M = 69122 vertices and the head consisting of a skin
surface mesh with N = 24574 vertices.

In the next section, we present a method to obtain an accurate
estimate of dense FSTT statistics. We also describe how to create
a parametric FSTT model that can be used together with a suitable
parametric head model to generate plausible head variants.
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Figure 2: Left: Skeleton triangle S with centers ci and radii ri.
Right: The resulting sphere-mesh wedge (image from [TPT16]).

4. Facial Soft Tissue Thickness

The FSTT is defined by a scalar thickness radius ri for each vertex
on the outside of the skull model, i.e., where a meaningful tissue
thickness between the skull bone and the skin surface can be deter-
mined. The set of these radii is denoted byR= (r1, . . . ,rm), where
m ≈ 16.5k is the number of outer skull vertices (from the overall
M ≈ 69k skull vertices).

In our previous work [GBA∗18] the geometric representation of
an FSTT-specified offset from a given skull was constructed as the
union of spheres centered at each outer skull vertex ci with its cor-
responding FSTT radius ri, as shown in Figure 1a. In the follow-
ing, we replace the discontinuous non-smooth union of spheres by
a sphere-mesh [TGB13], which leads to a continuous surface enve-
lope around the skull representing the FSTT offset (Figure 1b).

4.1. Sphere-Mesh Representation

Sphere-meshes are a variant of convolution surfaces [BS91] and
were originally used for shape approximation [TGB13]. Recently,
they have also been employed for hand modeling and track-
ing [TPT16, TTR∗17]. For representing the FSTT-offset from a
skull through sphere meshes, we consider all triangles on the outer
skull surface where each vertex ci has an associated FSTT thick-
ness radius ri. Each such triangle (c1,c2,c3) is convolved with a
sphere whose spatially varying radius is determined by barycentric
interpolation of the FSTT thicknesses r1,r2,r3, leading to a triangle
wedge as shown in Figure 2. With B(x,c,r) = ‖x− c‖− r denot-
ing the signed distance from a sphere of radius r centered at c, the
triangle wedge is implicitly defined as the zero-set of

min
α,β,γ≥0

α+β+γ=1

B(x, αc1 +βc2 + γc3, αr1 +βr2 + γr3) ,

where α, β, and γ are the barycentric coordinates.

If we denote the set of all wedges as T , the FSTT, as the union
of all wedges, is defined as the zero-set of its signed distance

dist(x) = min
t∈T

min
α,β,γ≥0

α+β+γ=1

B
(
x, αct

1 +βct
2 + γct

3, αrt
1 +βrt

2 + γrt
3
)
.

(1)
From the above implicit representation we can extract an explicit
triangle mesh through the Marching Cubes algorithm. In our exper-
iments a voxel size of 2mm turned out to provide a good trade-off
between precision and computing time, such that we use this voxel
size for all reconstructed sphere-meshes.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



Achenbach et al. / A Multilinear Model for Bidirectional Craniofacial Reconstruction

Figure 3: The parametric skull model (solid white) fitted to the
incomplete skull extracted from a partial CT scan (gray wireframe
overlay). The green points depict the skull model vertices that (i)
lie on the outside and (ii) overlap the extracted skull. For those
vertices the FSTT radii can be computed and optimized.

The Marching Cubes algorithm requires to evaluate the signed
distance to the sphere-mesh, i.e., Eq. (1), for each vertex of the
volumetric grid. Despite parallelizing this operation over multiple
CPU cores using OpenMP, it remains a computational bottleneck.
We therefore employ bounding spheres for each triangle wedge to
quickly select potential wedges or prune wedges that are too far
away. This simple strategy reduced the average time required for
Marching Cubes from 19.5min to 67s on a desktop PC with Intel
Xeon CPU (4 × 3.6 GHz).

As shown in Figure 1b, the resulting FSTT-offset is a continuous
surface, as opposed to the discontinuous union of spheres shown in
Figure 1a. However, it suffers from dent-like artifacts due to wrong
FSTT values, which we correct in the following.

4.2. Optimization of FSTT Radii

Given a CT scan, we compute the FSTT by first fitting the paramet-
ric skull model to the extracted CT skull, and then determining an
FSTT radius for each vertex of the outer skull surface. In [GBA∗18]
the radius ri was computed as the minimum distance from the skull
vertex ci to the CT-extracted skin surface. However, noise in the
CT data can lead to skin vertices perturbed into the interior, lead-
ing to erroneous too short distances and thus an underestimation
of the radius, which causes dent-like artifacts shown in Figure 1b.
To overcome these problems, we optimize the FSTT radii such that
the resulting sphere-mesh fits the skin surface in the least squares
sense.

In order to set up the optimization, we initialize the radii by the
above-mentioned minimum distance heuristic of [GBA∗18]. Since
many CT scans are missing the calvaria part, we cannot estimate
the FSTT for the skullcap (Figure 3). As the FSTT does hardly
vary in this region, we fill up the missing values by harmonic in-
terpolation, i.e., we solve ∆ri = 0 for all missing radii, with the
known valid radii as Dirichlet boundary constraints. This amounts
to solving a sparse linear Laplace system, where the Laplacian ∆ri
is discretized using the well-known cotangent weights and Voronoi
areas [BKP∗10]. We denote the resulting initial radii by r̄i.

We then optimize the FSTT radii such that the sphere-mesh
closely fits the skin surface extracted from CT. To this end, we
determine point-to-point correspondences between skin vertices

Figure 4: Computation of the nearest point s on a triangle wedge.

pi and their closest points si on the sphere-mesh and then min-
imize their squared distances. Finding the closest sphere-mesh
point si for a given skin vertex pi amounts to first determining the
triangle t and barycentric coordinates α,β,γ minimizing dist(pi)
from Eq. (1) (using linear search for t and gradient descent for
α,β,γ). From the interpolated values c = αct

1 + βct
2 + γct

3 and
r = αrt

1 + βrt
2 + γrt

3 we get the closest point on the sphere-mesh
as s = c+ r (pi− c)/‖pi− c‖ (Figure 4). As for Marching Cubes,
the use of bounding spheres speeds up the computation of closest
points considerably.

In order to remove unreliable correspondences, we prune corre-
spondences (pi,si) if their distance is larger than 1 mm, if the angle
between their normal vectors n(pi) and n(si) is larger than 20◦, or
if the angle between n(si) and the normal vector n(t) of the wedge’s
skeleton triangle is larger than 45◦. Similar to the symmetry heuris-
tic of [ZPK16], if p′i is the nearest point from si on the skin surface,
then

∥∥pi−p′i
∥∥ should be at most 0.5 mm. Finally, we prune cor-

respondences that are located on the boundary of a sphere-mesh
triangle and where the opposite wedge has no correspondences.

For each remaining correspondence (pi,si) we fix the barycen-
tric coordinates α

i,βi,γi and the triangle (ci
1,c

i
2,c

i
3), such that

the (squared) distance becomes a quadratic function of the radii
ri

1,r
i
2,r

i
3. If C denotes the set of correspondences and B(x,c,r) the

sphere distance, the fitting term to be minimized becomes

Efit(R) =
1
|C| ∑i∈C

B
(

pi, αci
1 +βci

2 + γci
3, αri

1 +βri
2 + γri

3

)2
.

The minimization of the fitting energy is regularized by two terms

Einit(R) =
1
m

m

∑
j=1

∥∥r j− r̄ j
∥∥2 and Ereg(R) =

1
m

m

∑
j=1

∥∥∆r j−∆r̄ j
∥∥2

penalizing the deviation of radii r j and their Laplacians ∆r j from
the initial state r̄ j, where the Laplacian ∆r j is again discretized us-
ing the cotangent weights [BKP∗10]. For given correspondences C
we then minimize the combined objective

E(R) = Efit(R)+0.1 ·Einit(R)+λregEreg(R) , (2)

which is quadratic in the radii R and hence amounts to solving a
sparse linear system. Overall, we alternatingly compute correspon-
dences C and optimize the radii R by minimizing Eq. (2), which
is iterated until convergence. We start with λreg = 1 and decrease
to λreg = 0.1 in an outer loop. When decreasing λreg, we also up-
date ∆r̄ j with ∆r j from our current guess. This process typically
converges in 4–6 iterations and takes about 30 s on average.
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Figure 5: Fitting the head model to an FSTT-offset of a given skull.
Representing the offset as union of spheres (top) leads to a higher
geometric error as our proposed sphere-mesh representation (bot-
tom). From left to right: FSTT-offset, fitted head model, color-coded
distance to true skin (blue: = 0mm, red: ≥ 3mm).

In comparison, Tkach et al. [TPT16, TTR∗17] decompose
wedges into triangles, spheres, and cones and solve a nonlinear
optimization for fitting a sphere-mesh of 30 nodes to their hand
model. In contrast, our approach is fully implicit and seamlessly
handles even special cases when radii are larger than skeleton tri-
angles. Our fitting requires simple linear least squares systems only
and efficiently and robustly optimizes our m≈ 16.5k FSTT radii.

As shown in Figure 1c, our optimization successfully removes
the artifacts due to CT noise, leading to a smooth FSTT geometry.
Based on the techniques presented in this section, we improve all 39
FSTT distributions from our database, from which we compute an
improved parametric FSTT PCA-model analogous to [GBA∗18].

4.3. Fitting a Head Model

In order to reconstruct a 3D face from both a given skull and a
given FSTT distribution, we fit our parametric head model to the
FSTT-specified geometric offset from the outer skull surface. To
this end, the template head model is first coarsely aligned through
a similarity transform and by optimizing parameters of the head-
PCA, followed by a fine-scale non-rigid deformation. To guarantee
plausible reconstructions, the fitting process is regularized by pe-
nalizing large PCA weights as well as strong bending [GBA∗18].

In [GBA∗18] the FSTT-offset was represented as a union of
spheres, leading to a discontinuous non-smooth surface. Fitting
the head model to this type of target geometry requires a rather
strong bending regularization and even a dedicated regularization
term for down-weighting correspondences in the interior part of
the FSTT (see Figure 5, top row for an exemplary fitting result). In
contrast, our proposed sphere-mesh representation with optimized
FSTT radii provides a smoother and more accurate FSTT offset. We

convert the implicit sphere-mesh to an explicit triangle mesh using
Marching Cubes (grid spacing of 2 mm) and point-sample the trian-
gle mesh to compute correspondences. The higher surface smooth-
ness and FSTT accuracy allow for less regularization and therefore
result in more precise fits (see Figure 5, bottom row). A quantita-
tive evaluation yields an average RMS fitting error of 0.51mm for
the optimized sphere-meshes, compared to an average RMS fitting
error of 0.82mm for the union of spheres, which is an improvement
of 37% in fitting accuracy.

5. Multilinear Model

Our goal is to develop a model that (i) maps from skull shape and
FSTT distribution—both controlled by low-dimensional parameter
vectors wskull and wfstt—to a 3D head/skin surface, and (ii) can also
invert this map to infer skull and FSTT from a given face scan.

Our parametric PCA-models for skull shape (Section 3) and
FSTT (Sections 3 and 4.2) can map skull and FSTT parameters
to specific skull and FSTT instances. Adding the FSTT onto the
skull through the sphere-mesh representation (Section 4.1) and fit-
ting the head model to it (Section 4.3) eventually implements the
forward mapping. However, this multi-step approach requires about
90 s, which is prohibitive for interactive applications, and it can-
not easily be inverted. Inspired by previous approaches that have
successfully applied multilinear models in the context of faces, us-
ing separate parameter sets for person identity and facial expres-
sions [VBPP05, BW13, CWZ∗14], we in the following generate
a multilinear model that can efficiently and robustly compute the
head surface from skull and FSTT parameters and vice versa.

5.1. Generating Training Data

Multilinear models have to be trained on the full Cartesian prod-
uct of their independent parameter sets. In our context, this means
generating a set of skull shapes and a set of FSTT distributions,
and providing as training data each skull shape equipped with each
FSTT variation (input) and the respective head surface (output).

It obviously is not possible to collect such data from measure-
ments alone, as it would require multiple CT scans of the same
person under different, controlled body weight variations. Our CT
scans include different skulls with different FSTT distributions, but
not their dense Cartesian product. By building independent PCA
models for skull shape and FSTT distributions, we effectively de-
coupled these two components, allowing us to re-couple them by
generating synthetic head models for the Cartesian product of skull
shape variation times FSTT variation as outlined above, thus ob-
taining statistically and anatomically plausible training data.

As a trade-off between computational effort and coverage of in-
put data, we sample skull variations along six PCA-dimensions and
FSTT variations along five PCA-dimensions, which covers more
than 70% of the variation included in our CT data. For each princi-
pal component we sample two offsets at ±2 standard deviations
along that component. Furthermore, we include the mean skull
with mean FSTT from our parametric models, which in total yields
25+6 + 1 = 2049 pairs of skulls and FSTT distributions. For each
of these pairs we compute the sphere-mesh offset and fit the head
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model as described before, which takes about 90 s for each model
on a desktop PC with 4×3.6 GHz Intel Xeon. We also experimented
with sampling more PCA dimensions to cover more than 75% of
the variation in our CT data, but this did not lead to significant
improvements in fitting accuracy and did not justify the increased
computation effort for a more complex multilinear model.

5.2. Generating the Multilinear Model

Our training data consist of 2048 pairs of skull mesh (M = 69122
vertices) and skin mesh (N = 24574 vertices), which we each stack
into a column vector Xi ∈ IRdvert with dvert = 3N +3M. These pairs
are obtained as dskull = 64 skull variants, each containing dfstt = 32
FSTT distributions. Following [BW13], we center each Xi by sub-
tracting the model constructed from the mean skull with the mean
FSTT from our parametric models, denoted by X̄.

To construct the multilinear model (MLM in the following), we
arrange the 2048 mean-centered geometry vectors Xi into a three-
dimensional array D ∈ IRdvert×dskull×dfstt , which is formally called a
third order (3-mode) data tensor. This way, the three mode spaces
of D are associated with skin/skull vertex geometry, skull varia-
tions, and FSTT variations. This data tensor D is then decomposed
by higher-order singular value decomposition [DL97] as

D =M×skull Uskull×fstt Ufstt , (3)

where

M=D×skull UT
skull×fstt UT

fstt (4)

is a multilinear model tensor M ∈ IRdvert×dskull×dfstt . Uskull ∈
IRdskull×dskull and Ufstt ∈ IRdfstt×dfstt are orthogonal matrices contain-
ing the left singular vectors of the corresponding mode spaces. If
we choose n to be either ‘skull’ or ‘fstt’, the matrix Un is con-
structed as follows (please see [BW13, VBPP05] for more details):
We first unfold D along the n-th mode to a matrix Tn by stack-
ing as columns all vectors of D aligned with the n-th mode. Then
the matrix Un ∈ IRdn×dn can be computed via standard matrix SVD
as Tn = UnSnVT

n . For instance, unfolding D along the skull-mode
leads to a matrix Tskull ∈ IRdskull×(dvert·dfstt). Given D and Un, the
n-th mode product D×n UT

n acts on each vector v ∈ IRdn in D’s
mode-n space via the linear transformation v 7→ UT

n v.

Finally, given skull parameters wskull ∈ IRdskull and FSTT param-
eters wfstt ∈ IRdfstt , the MLM computes the corresponding combined
skin/skull mesh X ∈ IRdvert by tensor contraction as

X(wskull,wfstt) = X̄+M×skull wT
skull×fstt wT

fstt. (5)

This evaluation takes less than a second, making the MLM well
suited for interactive applications, for instance in order to explore
FSTT variations for a given skull in a forensic context.

5.3. Multilinear Model Fitting

The MLM maps skull parameters wskull and FSTT parameters wfstt
to a geometry X(wskull,wfstt), which includes both the N head ver-
tices and the M skull vertices. Inverting this process means deter-
mining the parameters wskull and wfstt such that the corresponding

model X(wskull,wfstt) closely matches a given geometry observa-
tion, which could for instance be a face scan or a skull scan ex-
tracted from CT. The inverse process therefore amounts to nonrigid
registration (or fitting) of the MLM to a given point cloud P .

This fitting procedure requires a coarse initial alignment, which
can be performed manually (by selecting landmarks) or com-
puted automatically, depending on the type of scanner data avail-
able [GBA∗18,AZB15]. Following [BW13] we initialize the MLM
as the mean shape X̄ = X(wskull,wfstt). To speed up the fitting pro-
cess, we uniformly sub-sample the scanner dataP to approximately
100k points, without noticeably sacrificing geometric fidelity.

After this initialization, we alternatingly compute closest point
correspondences C between the given point cloudP and the current
state X(wskull,wfstt) and optimize the model parameters. We again
prune correspondences if their distance is too high or their normal
vectors deviate too much. Furthermore, we prune correspondences
for error-prone areas like the teeth, the inner part of the skull, hair,
ears, or eye regions, which we have pre-selected on the template.

Given a set of correspondences (pi,xi) ∈ C, we minimize their
squared distances by optimizing for similarity transform (scaling s,
rotation R, translation t) and model parameters wskull,wfstt:

Efit(wskull,wfstt,s,R, t) = 1
|C| ∑i∈C

‖sRxi(wskull,wfstt)+ t−pi‖2 ,

(6)
where pi ∈ P is a scanner point and xi(wskull,wfstt) its closest
point on the current state X(wskull,wfstt), which is typically located
within a triangle and expressed through barycentric coordinates. To
prevent over-fitting, we add a Tikhonov regularization term

Ereg(wskull,wfstt) =

1
dskull

dskull

∑
k=1

(
wid,k− w̄id,k

σid,k

)2

+
1

dfstt

dfstt

∑
l=1

(
w f stt,l− w̄ f stt,l

σ f stt,l

)2

,

(7)

with σ
2
skull,k and σ

2
fstt,l being the variance of the principal compo-

nents computed from the covariance matrices after unfolding D
along the respective modes [BW16]. Similar to [VBPP05], we then
minimize the combined objective function

E(wskull,wfstt,s,R, t) =Efit(wskull,wfstt,s,R, t)+Ereg(wskull,wfstt)
(8)

using block-coordinate descent, i.e., we alternatingly solve for ei-
ther MLM parameters wskull, wfstt or pose parameters s,R, t, while
fixing the respective other parameters. This energy minimization
is alternated with the computation of new correspondences and it-
erated until convergence, which typically takes 3–5 iterations and
requires about 30 s on average.

The result of the fitting process are model parameters wskull and
wfstt, which through Eq. (5) can be evaluated to a skin mesh and a
skull mesh that closely matches the scanner point cloud P .

6. Evaluation

We evaluate our method on 5 different pairs of skulls and corre-
sponding skin surfaces extracted from CT scans that are not in-
cluded in our training data introduced in Section 3. We present re-
sults for fitting our MLM to scanner data in order to either infer
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(a) LM (b) MLM (c) Fine-scale non-rigid fitting [GBA∗18]

Figure 6: Comparison of (a) LM and (b) MLM fitting and reconstruction results, (c) Automatic forensic facial reconstruction approach
presented in [GBA∗18] with fine-scale non-rigid fitting result and facial reconstruction based on mean FSTT for one subject of our evaluation
data set. Each from left to right: Skull fit (white) with skull extracted from CT (blue) as overlay, skull fit and skin reconstruction.

skin surface from skull or vice versa. We compare our MLM with
two different approaches: (1) a linear model (LM) created through
PCA of the 2049 combined skin/skull pairs Xi and (2) the forensic
facial reconstruction approach presented in [GBA∗18]. Note that
due to privacy reasons the extracted or reconstructed skin surface
can only be shown for one single subject.

Generating and Fitting a Linear Model. Analogous to the gen-
eration of the MLM, we use the 2049 pairs of skin/skull mesh from
our synthetic training data to generate the LM. The vertices of each
skin mesh and corresponding skull mesh are again stacked into a
column vector Xi ∈ IRdvert . After subtracting the mean X̄ ∈ IRdvert

over all training data from each of the Xi we arranged the resulting
mean-centered geometry vectors into a dvert × 2049-dimensional
matrix. PCA of this matrix gives U = [u1, . . . ,ud ] consisting of the
first d principal components. To obtain the same number of degrees
of freedom as for the MLM, we chose d = dskull+dfstt = 96. Given
a weight vector w ∈ IRd , the LM allows to generate a combined
skin surface and skull mesh as

X(w) = X̄+Uw. (9)

Fitting the LM to a given face/skull geometry is very similar to
fitting the MLM. Again, we distinguish between fitting to scanner
data of skin/head or skull, which basically differs in the way of
how correspondences are computed. Given an initial alignment, we
perform a non-rigid registration to estimate the weights w by mini-
mizing a Tikhonov regularized linear least-squares problem.

6.1. Inferring Skin Surface from Skull

To analyze our skin reconstruction process, we fit both the LM and
the MLM to the skulls extracted from our evaluation data set. Fig-
ure 6 shows skull fitting and skin surface reconstruction results for
one specific subject based on the LM (Figure 6a) or the MLM (Fig-
ure 6b), respectively. The resulting skin reconstruction of the LM is
an arbitrary skin surface, related to the underlying PCA space and
by no means a reconstruction based on the mean FSTT distribution.
It is comparable to the MLM if wfstt is not adjusted. Because both
models are built on the same training data, both reconstructions are

Figure 7: Multilinear model fitting: Skin surface variants given a
skull. Skin variants can be simply generated by fixing skull param-
eters wskull and varying FSTT parameters wfstt.

visually very similar. Moreover, fitting the MLM takes about 28 s,
while fitting the LM takes 10 s on average.

Figure 6c shows a fitted skull and a skin reconstruction based
on the approach presented in [GBA∗18]. Since our skull fittings
in Figures 6a and 6b are constrained by the LM and the MLM,
respectively, the result is less accurate compared the fine-scale non-
rigid registration of [GBA∗18]. The RMS error based on the skull
evaluation mask (see Figure 9) results in 0.34 mm [GBA∗18] vs.
1.13 mm for the MLM. However, the resulting skin estimations of
both approaches are visually very similar.

Fitting based on the LM has the inherent drawback that there is
no control over the FSTT distribution, which results in a single non-
changeable skin surface reconstruction. The benefits of the MLM
come into play when reconstructing skin surface variants for a spe-
cific skull, since the MLM allows to generate different head vari-
ants by varying wfstt. Figure 7 shows different head surface vari-
ants generated by manipulating the FSTT for a given, fixed skull.
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1.59 1.77 2.00 1.83 2.00 1.55 1.58 1.62 1.84 2.00

Figure 8: Skull reconstructions given skin surface scans from our 5 evaluation data sets. Reconstruction results for the linear model (left)
and for the multilinear model (right). For each model from top to bottom: Skulls extracted from CT (blue) and our skull reconstructions
(white) as overlay, the minimal distance to the actual skull (blue: = 0mm, red: ≥ 3mm), and the RMS errors in mm.

Figure 9: Evaluation mask for skull reconstructions (green).

The presented MLM allows to generate skin variants nearly in real-
time, only at the cost of evaluating Eq. (5). In contrast, the skin
reconstruction process presented in [GBA∗18] is based on several
time consuming steps resulting in a computing time of about 2 min.

6.2. Inferring Skull Shape from Face Scan

To analyze the accuracy of our skull reconstruction process, we fit-
ted the MLM and the LM to the extracted skin surfaces from the
evaluation data sets. For privacy reasons, we can only show skull
reconstructions but not the skin surface fittings. For the evaluation
we create a point mask, which is limited to the facial area of the
skull. Since our CT data set for creating the FSTT statistics is par-
tially incomplete for the upper part of the skull, we additionally
restrict the evaluation mask to the smallest available calvaria part
and also exclude teeth. The final evaluation mask used is shown in
Figure 9, with points of interest colored green.

Distance is measured from each point of interest on a recon-
structed skull to the surface of the corresponding extracted skull.
The average RMS fitting error over all 5 reconstructed skulls is
1.72 mm using the MLM and 1.85 mm using the LM. As can be
seen clearly in Figure 8, both models not only allow to reconstruct
the correct size of the skull, but also correctly reproduce the shape
of the skull, in particular the emplacement of the mandibular. For
both models the fitting error is below 2 mm. While reconstructing
skull from given skin surfaces using the MLM gives slightly better
results, it takes about 30 s compared to 8 s using the LM.

6.3. Simulating Weight Changes for Face Scans

Fitting the MLM to a face scan does not only reveal the skull pa-
rameters wskull, but also the FSTT parameters wfstt of the scanned
individual. Given the skull shape and FSTT distribution of the per-
son, we can simulate weight changes by varying wfstt.

Since the MLM does not reconstruct hairs or eyes, we start to
obtain a realistic head reconstruction by fitting a head template to
a photogrammetric face scan using the method of [AWLB17]. This
head template has the same triangulation as the template used in
Section 4.3, but has open eyes, eyeballs, and teeth. Furthermore, the
nonlinear fine-scale deformation of [AWLB17] allows a reasonable
reconstruction of hair geometry (Figure 10, top row).

Since both models (the realistic face model and the MLM) were
fitted to the same scanner data, they are well aligned to each other.
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Figure 10: The multilinear model makes it possible to vary FSTT
for a specific individual. Three scanned persons reconstructed by
[AWLB17] (first row) with varied FSTT (second and third row).

When changing the FSTT of the scanned person from wfstt to w̃fstt,
we can therefore simply transfer the per-vertex displacement

X(wskull, w̃fstt)−X(wskull,wfstt)

computed by the MLM onto the realistic face model, thereby ob-
taining the thinner or thicker models shown in Figure 10. Finally,
the positions of the eyeballs are adjusted to accommodate the slight
displacements in the eye lids due to the simulated weight changes.

7. Conclusions

We presented a multilinear model that maps a set of low-
dimensional parameters for skull shape and FSTT distribution to
an accurate and high-quality mesh of both the skin and the skull
geometry. To foster further research in this direction, we make
our multilinear model publicly available for research purposes at
doi:10.4119/unibi/2930619.

The required training data, a dense Cartesian product of skull
and FSTT variations, cannot be obtained by measurements alone.
Based on individual parametric models of skull shape, FSTT distri-
butions, and head shapes, we generate synthetic—but statistically
plausible—training data by computing head models for given skull
shapes and FSTT distributions. Representing the FSTT-offset by a
sphere-mesh improved the quality of the resulting head models.

We demonstrated our model to have several interesting and high-
potential applications in the medical context. First, it allows to sim-
ulate plausible head shapes for given skull and FSTT variations at
interactive rates, which is an important component in explorative
computer-aided forensics. Second, by fitting the multilinear model
to face scans, we can infer both the skull shape and the FSTT of
the scanned individual and successively simulate weight changes.
More importantly, the estimation of a reasonably accurate skull
shape from a photogrammetric face scan helps to reduce or even
avoid X-radiation for bony cephalometric skull assessments in or-
thodontics or for surgical planning for patients with craniofacial
malformations. To the best of our knowledge, there is no approach
to infer the skull shape from a skin surface scan at our precision.

One limitation of our model is that there is no guarantee that eyes
and mouth stay at their anatomically correct positions relative to the
skull when varying the FSTT parameters. The slight movement of
eyes and mouth can be avoided in the future by incorporating corre-
sponding constraints into the training data generation. Furthermore,
since real faces and FSTTs are asymmetric to a certain extent, our
learned FSTT component inherits this asymmetry, which can result
in asymmetric head shapes when varying FSTT parameters.

Besides improving the theoretical properties of our model, col-
lecting more CT scans of a larger variation of real people is needed
to increase the variability and expressiveness of our model. Access
to more training data would also allow for exploring different learn-
ing algorithms, or to investigate other approaches for filling up the
sparse scanned data to achieve a dense set of training data.
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