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Abstract

In this paper, we present a method for automated estimation of a human face given a
skull remain. Our proposed method is based on three statistical models. A volumetric
(tetrahedral) skull model encoding the variations of different skulls, a surface head
model encoding the head variations, and a dense statistic of facial soft tissue thickness
(FSTT). All data are automatically derived from computed tomography (CT) head
scans and optical face scans. In order to obtain a proper dense FSTT statistic, we
register a skull model to each skull extracted from a CT scan and determine the FSTT
value for each vertex of the skull model towards the associated extracted skin surface.
The FSTT values at predefined landmarks from our statistic are well in agreement with
data from the literature. To recover a face from a skull remain, we first fit our skull
model to the given skull. Next, we generate spheres with radius of the respective FSTT
value obtained from our statistic at each vertex of the registered skull. Finally, we fit a
head model to the union of all spheres. The proposed automated method enables a
probabilistic face-estimation that facilitates forensic recovery even from incomplete skull
remains. The FSTT statistic allows the generation of plausible head variants, which can
be adjusted intuitively using principal component analysis. We validate our face
recovery process using an anonymized head CT scan. The estimation generated from
the given skull visually compares well with the skin surface extracted from the CT scan
itself.

Introduction 1

Facial reconstruction is mainly used in two principal branches of science: forensic 2

science and archaeology. Remains of a human skull act as input to reconstruct the most 3

likely corresponding facial appearance of the dead person to enable recognition. 4

Traditional methods rely on manual sculpturing a moldable substance onto the replica 5

of the unknown skull using anatomic clues and reference data. Claes et al. [1] consider 6

this a highly subjective procedure requiring a great deal of anatomical and artistic 7
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modeling expertise. The result is often limited to a single reconstruction, because it is 8

very time consuming. Computer-based methods can provide consistent and objective 9

results and also allow multiple reconstructions using different meta-information, such as 10

age, or weight, because a reconstruction can be accomplished in a short time [1]. In her 11

comprehensive review, Wilkinson [2] reports that there is a lot of criticism on facial 12

reconstruction techniques from scientists, but following the same method both 13

techniques, manual or computer-based, have a rather small degree of artistic 14

interpretation. Wilkinson concludes that achieving anatomical accuracy should be 15

reproducible and reliable, however some stages in the reconstruction process involve a 16

little degree of artistic interpretation. 17

Computer-aided facial reconstruction methods have been previously proposed in 18

other publications [3–7]. Related work uses different techniques for the underlying 19

registration as well as for the subsequent facial reconstruction. Although not 20

standardized, FSTT measurements play an important role both in facial approximation 21

and craniofacial superimposition methods due to the quantitative information 22

provided [8]. A wide variety of different techniques such as needle probing, caliper or 23

radiographic measurements, or ultrasonographic assessments are used to determine the 24

FSTT, which lead to different results in the FSTT statistics. In addition, 3D imaging 25

techniques such as CT or Magnetic Resonance Imaging (MRI) are employed for this 26

purpose. Driven by the generally lower radiation dose when compared to medical CT, 27

lately Cone Beam Computed Tomography (CBCT) has also been used [9]. In general it 28

is difficult to compare FSTT studies based on CT and CBCT scans. CT scans are taken 29

in supine position whereby CBCT scans can be taken in various positions (sitting, lying 30

down, standing up), which has different gravity effects on the FSTT. CBCT also has 31

the inherent drawback that some landmarks cannot be found in the data sets because it 32

is normally limited to the craniofacial region. Although not backed by numerical data, 33

it is generally advocated to prefer measurements on living individuals over cadavers [8]. 34

In [8], Stephan and Simpson conclude that regardless of the applied technique the 35

measurement error for FSTT assessment is rather high (relative error of around 10%) 36

and that no method so far can be considered superior to any other. In addition, the 37

authors stated that small sample sizes for most of the studies also compromise the 38

degree to which the results from such studies can be generalized. 39

Generally spoken, measurements based on a few distinct landmark points yield the 40

inherent drawback of providing only a few discrete thickness values. Areas between 41

these distinct measurement points need to be interpolated. A dense soft tissue map 42

would yield important information for facial reconstruction. A statistical head model 43

could be fitted to such a dense soft tissue profile thereby providing an estimate of the 44

visual appearance of the person to be identified, based on statistics of the sample data. 45

Turner et al. [3] introduced a method for automated skull registration, and 46

craniofacial reconstruction based on extracted surfaces from CT data that was applied 47

to a large CT data base consisting of 280 individuals in [4]. For registration of a known 48

skull to a questioned one, the authors use a heuristic to find crest lines in combination 49

with a two-step ICP registration followed by a thin-plate spline warping process. The 50

same warping function is applied to the extracted skin of the known skull. Following, 51

from a collection of 50 to 150 warped skin surfaces they use principal component 52

analysis (PCA) to construct a “face-space” with a mean face for the questioned skull. 53

Using the linear combination of the eigenvectors with some a-priori knowledge, such as 54

age and sex, they are able to generate a subset of most likely appropriate appearances 55

for the questioned subject. To this end, both the questioned and the known skull are 56

represented as polygonal meshes and are reduced to their single, outer surface. Thereby, 57

disregarding the volumetric nature of the bony structure in some cases leads to poor 58

fitting results. 59
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The utilization of a deformable template mesh for forensic facial reconstruction was 60

presented by Romeiro et al. [5]. Their computerized method depends on manually 61

identifying 57 landmarks placed on the skull. Based on these preselected landmarks and 62

a corresponding FSTT (obtained from other studies) an implicit surface is generated 63

using Hermite radial basis functions (HRBF). To improve the quality of the result, they 64

use several anatomical rules such as the location of the anatomical planes and 65

anatomical regressions related to the shape of the ears, nose, or mouth. Hence, the 66

quality of their results strongly depends on an appropriate template that properly takes 67

age, sex, and ethnicity into account. 68

An approach for craniofacial reconstruction based on dense FSTT statistics, utilizing 69

CT data, was presented by Shui et al. [6]. Their method depends on 78 manually 70

selected landmarks placed on the skull, which guide the coarse registration of a template 71

skull to each individual skull, followed by a fine registration using ICP and thin plate 72

splines (TPS). The FSTT measurement is performed for each vertex of the deformed 73

skull in the direction defined by the geometric coordinate. A coarse reconstruction of a 74

face from an unidentified skull is achieved by translating each skull vertex in the defined 75

direction by the length of the FSTT measured at this position. To achieve a smooth 76

appearance six additional points have to be marked manually for guiding a TPS 77

deformation of a template face to the coarse reconstruction. Finally, the recovery of 78

mouth, eyes, and nose has to be performed by a forensic expert, which makes the 79

method not fully automatic. 80

Shui et al. [7] proposed a method for determining the craniofacial relationship and 81

sexual dimorphism of facial shapes derived from CT scans. Their approach employs the 82

registration method presented in [6], to register a reference skull and face to a target 83

skull respective face. Applying a PCA to the sets of registered skull and skin templates, 84

they derive a parametric skull and skin model. Through analyzing the skull- and 85

skin-based principal component scores, they establish the craniofacial relationship 86

between the scores and therefore reconstruct the face of an unidentified subject. 87

Although the visual comparison of the estimated face with the real shows good results, 88

these results appear to be due to over-fitting. Moreover, the geometric deviation, 89

especially in the frontal part of the face, are mostly around 2.5–5 mm, which indicates 90

rather inaccurate reconstruction results. 91

Our approach to forensic facial reconstruction is divided into two parts: model 92

generation and forensic facial reconstruction. Unlike most previous methods [3–7] our 93

approach is fully automated, from the initial skull registration up to the final face 94

reconstruction, and thus does not require any manual interaction. Only the initial 95

model generation (preprocessing or training phase) requires a few manual steps. The 96

next section describes the generation of the three models required for our automated 97

facial reconstruction approach: The parametric skull model, the statistic of FSTT, and 98

the parametric head model. In the following sections the automated facial 99

reconstruction process is presented, including the modeling of variants of plausible 100

FSTT distributions for a given skull. 101

Model generation 102

In this section we present the proposed model generation processes, as outlined in Fig 1. 103

We use volumetric CT scans and optical 3D surface scans as input and distinguish 104

between two input types: skulls and heads. In the following, the outer skin surface of a 105

head is referred to as head and the bony skull structure is referred to as skull. In order 106

to obtain a uniform data basis, a preprocessing step is performed to extract the skull 107

and the head as triangular surface meshes from each CT scan. In the next step we need 108

to establish the relationship between different skulls as well as between different heads. 109
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For this purpose, in a fitting process, we register an appropriate template model to each 110

given mesh of a specific input type. After that, we are able to utilize the fitted 111

templates to determine the geometric variability of the skulls respectively heads 112

performing a PCA. As result we derive two parametric models: a parametric skull model 113

and a parametric head model. Based on corresponding skulls and heads extracted from 114

CT scans we additionally build a dense FSTT map in the statistical evaluation step. 115

Fig 1. Overview of our model generation processes. Generation of a skull and a
head model as well as a dense FSTT statistic from multimodal input data.

Database 116

Following internal ethical review board approval (Ethik-Kommission der 117

Landesärztekammer Rheinland-Pfalz, Deutschhausplatz 2, 55116 Mainz), head CT scans 118

were collected from the PACS system of the University Medical Center Mainz. We only 119

used existing CT data (from four different CT devices) from our database. No subject 120

was exposed to ionizing radiation for this research. The local ethical approval board has 121

approved the processing of the pseudonymized existing CTs (from the DICOM database 122

of the University Medical Center Mainz) to generate the statistical models under the 123

approval number No 837.244.15 (10012) (date: 05.08.2015). In our study we included 124

CT scans that meet the following criteria: 125

1. The facial skull of the patient is completely imaged. 126

2. The slice thickness is less than or equal to 1 mm. 127

3. The subject has no significant oral and maxillofacial deformations or missing 128

parts. 129

From several hundred CT scans that we analyzed a total number of 60 were suitable 130

for our purpose. However, only 43 of these scans could be used for generating the 131

parametric head model and the statistic of FSTT, since in the remaining 17 CT scans 132

external forces (e.g. frontal extending neck stabilizers, nasogastric tubes, etc.) 133

compressed the soft tissue. In a preprocessing step every CT scan was cropped, such 134

that we obtain a consistent volume of interest limited to the head area. For this purpose 135

the most posterior point of the mandibular bone was determined automatically in the 136

2D slice images and the volume was trimmed with an offset below this detected position. 137

After this cropping step, bone and skin surface meshes were extracted using the 138
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Marching Cubes algorithm [10] (we used the Hounsfield units -200 and 600 as iso-values 139

for skin and bone surface extraction, respectively). To remove unwanted parts, such as 140

the spine or internal bone structures, a connectivity filter was applied to the bone mesh, 141

leaving only the skull. Finally, all extracted meshes were decimated to obtain a uniform 142

point density for all data sets [11]. The meshes extracted from CT data were 143

supplemented by triangle meshes from 3D surface head scans (From 144

www.3dscanstore.com) of real subjects in order to fill up the database for our model 145

generation processes. The 3D surface scans are of high quality, do not suffer from 146

artifacts or strong noise, and consist of about 500 k vertices in case of the head and 147

about 400 k vertices in case of the skull. In summary the following data sets were 148

included in the study: 149

1. A total number of p = 62 skulls (60 extracted skulls from CT scans and 2 skulls 150

from 3D surface scans) were used to generate a skull model. 151

2. A total number of q = 82 heads (43 extracted skin surfaces from CT scans and 152

39 heads from 3D surface scans) were used to generate a head model. 153

3. A total number of r = 43 corresponding skulls and skin surfaces extracted from 154

CT scans were used to build the FSTT statistic. 155

Generating a parametric skull model 156

In order to generate a parametric skull model we need to establish the relationship 157

between the different skulls from our database. For this purpose, we register a single 158

template skull to each skull individually. This template model has to be a volumetric 159

tetrahedral mesh in order to accurately represent the solid nature of a bony skull. We 160

therefore converted a surface triangle mesh of a skull (Based on 161

www.turbosquid.com/3d-models/3d-human-skull/691781) to a volumetric 162

tetrahedral mesh. Our template skull model, shown in Fig 1, consists of m ≈ 70 k 163

vertices, whose positions we denote by S = {s1, . . . , sm}. Tetrahedra T (S) are built by 164

connecting four vertices each, and the set of all tetrahedra is denoted as T = T (S). The 165

vertices S and tetrahedra T constitute the tetrahedral mesh of our template skull. 166

The fitting process comprises the following two main stages for an input skull with 167

vertex positions P = {p1, . . . ,pM}: 168

1. A global rigid transformation that coarsely aligns the input skull to the template 169

skull. The registration starts with the fast global registration approach presented 170

in [12], followed by a refinement step using the well known Iterative Closest Point 171

(ICP) algorithm [13]. 172

2. A fine registration of the template skull to the input skull, which consists of 173

several non-rigid transformation steps, computed by minimizing the energy 174

(inspired by [14]) 175

E(S) = Efit(S) + λregEreg(Sprev,S) (1)

consisting of a fitting term Efit and a regularization term Ereg. 176

In the non-rigid step, the fitting term

Efit(S) =
1∑

c∈C wc

∑
c∈C

wc ‖sc − fc‖2

penalizes the squared distance between a vertex on the template skull sc and its 177

corresponding point fc, which is a point on or close to the mesh of the input skull. The 178
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factor wc ∈ [0, 1] is a per-correspondence weight, which controls the influence of the 179

various correspondences, such as points on the inner or outer skull surface. 180

The regularization term

Ereg(Sprev,S) =
∑
T∈T

(vol(T (S))− vol(T (Sprev)))
2

penalizes geometric distortion of the template skull during the fitting. Sprev represents 181

the vertex positions of the previous deformation state, while S stands for the current 182

(to-be-optimized) positions. The function vol(T ) denotes the volume of tetrahedron T . 183

Thus, the regularization term penalizes the change of volume of tetrahedra. The 184

non-rigid deformation starts with rather stiff material settings and successively softens 185

the material during the registration process (by reducing λreg). 186

During the various non-rigid transformation steps we use different strategies to 187

define the correspondences C. First, correspondences are determined by the hierarchical 188

ICP approach described in [15], where we register hierarchically subdivided parts of the 189

template skull to the input skull using individual similarity transformations. This 190

results in several small pieces (e.g., the eye orbit) that are well aligned to the input 191

skull. Based on the correspondences found in this step the whole template skull is 192

registered towards the input skull. In subsequent deformation steps, we estimate the 193

correspondences in a closest vertex-to-vertex manner, where we only consider vertices 194

lying in high curvature regions, additionally pruning unreliable correspondences based 195

on distance and normal deviation [15]. In the final non-rigid transformation steps, when 196

the meshes are already in good alignment, we use vertex-to-surface-point 197

correspondences. These correspondences are determined considering all vertices 198

employing a two-step search: First, we search for vertex-to-vertex correspondences from 199

the input skull to the template skull, pruning unreliable correspondences based on 200

distance and normal deviation. Second, we search for correspondences from the 201

computed corresponding vertices on the template towards the input skull. This second 202

step is computed in vertex-to-surface-point manner, this time pruning only large 203

deviation between the vertex and surface normal. 204

The described two-way correspondence search prevents tangential distortions of the 205

fitted template skull and can handle artifacts in the input skulls, e.g., artifacts in the 206

teeth region due to metallic restorations. Additionally, it makes our registration process 207

robust against the porous bony structure caused by low resolution of the CT scan or the 208

age of the subject. To further prevent mesh distortions we additionally use a release 209

step, where the undeformed template is deformed towards the current deformed state 210

using only preselected points of interest (for further details see [15]). 211

In order to analyze the accuracy of our skull registration process, we evaluated the 212

fitting error by computing the distance for all vertices of the facial area (which covers 213

all predefined landmarks) of an input skull towards the fitted template model. The 214

mean fitting error for all 62 fitted skulls is below 0.5 mm. 215

Stacking the vertex coordinates of each fitted skull into column vectors 216

s = (x1, y1, z1, . . . , xm, ym, zm)
>

we can apply PCA to the set of fitted skulls (after 217

mean-centering them by subtracting their mean s̄). This results in a matrix 218

U = [u1, . . . ,up−1] containing the principal components ui in its columns. A particular 219

skull S in the PCA space spanned by U can be represented as 220

S(a) = s̄ + Ua, (2)

where a = (α1, . . . , αp−1)
>

contains the individual weights of the principal components 221

of U. The parametric skull model (2) can be used to generate plausible skull variants as 222

a linear combination of the principal components, which is depicted exemplarily for the 223

first two main principal components in Fig 2. 224
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pc 1

pc 2

pc 1

pc 2

pc 1

pc 2

pc 1

pc 2

Fig 2. Skull variants along the two principal components with the largest
eigenvalues. We visualize s̄ + α1u1 + α2u2, where αi = ai · σi, i = 1, 2, is the weight
containing the standard deviation σi to the corresponding eigenvector ui, and the factor
ai ∈ {−2, 0, 2}.

We finally select 10 landmarks on the parametric skull model that are used to guide 225

the head fitting process in the automatic forensic facial reconstruction (see detailed 226

explanation in the section on head fitting). 227

Generating a statistic of facial soft tissue thickness 228

In a statistical evaluation process the distances between 43 corresponding skulls and 229

heads extracted from the CT scans are measured. To this end, we determine for each 230

vertex of a fitted skull the shortest distance to the surface of the extracted skin 231

surface [16]. Finally, the mean and standard deviation of the FSTT are computed per 232

vertex. Fig 3 shows the mean skull s̄ with color-coded mean and standard deviation of 233

the obtained FSTT. 234

Mean of FSTT (mm)
0 25

SD of FSTT (mm)
0 8

Fig 3. Statistic of the FSTT on a mean skull. Mean and standard deviation of
FSTT computed from the 43 CT scans.

To obtain the FSTT data we often register our complete template skull to partial 235

input skulls, which, for instance, have holes in the bony structure or a missing upper 236

part of the calvaria. Fig 4 (left) shows an example of our template skull fitted to a 237

partial skull extracted from CT data. To avoid bias caused by false FSTT 238

measurements, we validate if a vertex of a fitted skull corresponds to a surface point on 239

the corresponding extracted partial skull. We exclude all vertices of the former whose 240

distance to the latter is larger than a given threshold (2 mm in our implementation). 241

This results in the validation mask depicted in Fig 4 (center), which is used for the 242
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statistical evaluation. The number of FSTT measurements used for a particular vertex 243

in our statistic is visualized in Fig 4 (right). The facial skull is covered predominantly by 244

all 43 samples, whereas the upper part of the calvaria is covered by a few samples only. 245

No. Samples per Vertex
0 43

Valid Unusable

Fig 4. Basis for the statistical evaluation of the FSTT. From left to right:
Example of a fitted skull (white) and corresponding extracted skull (black wireframe),
validation mask (corresponding to left), number of samples used for all vertices in the
statistic of FSTT in Fig 3.

The generated FSTT statistic is based on 43 different subjects (26 males and 17 246

females) with a mean age of 28 years. Fig 5 presents the computed FSTT (see Fig 3) at 247

some landmarks commonly used in forensic reconstruction [17]. Our results for these 248

landmarks fit well into the range presented in [18]. 249

Generating a parametric head model 250

Similar to the skull model, we generate the parametric head model by fitting a template 251

head to head scans of real subjects, which establishes correspondence between them, 252

and then perform statistical analysis using PCA. For model generation we employ the 253

skin surfaces extracted from the 43 CT scans used for building the FSTT statistics (26 254

male, 17 female). However, since for some CT scans the nose tip or the upper part of 255

the calvaria are cropped, we bootstrap the model generation by first fitting the template 256

head to a set of 39 optical surface scans (20 male, 19 female) that represent complete 257

heads. We generate a preliminary PCA model from these complete surface scans and 258

use it to fit to the incomplete CT scans, where it fills the missing regions in a realistic 259

manner. The final PCA model is then built from the template fits to all 82 scans. 260

In the following, a head scan (extracted from CT or generated through optical scan) 261

is represented by its point set Q = {q1, . . . ,qN}. Since the head models are skin 262

surfaces only, our template head is a surface triangle mesh consisting of n ≈ 6 k vertices 263

with positions H = {h1, . . . ,hn}, as shown in Fig 1. The template fitting process 264

consists of two stages, similar to the skull fitting: 265

1. We first optimize scaling, rotation, and translation of the template model to align 266

it to the point set Q by minimizing the sum of squared distances between points 267

qc on the point set Q and their corresponding points hc on the template model H 268

using ICP [13]. 269

2. After this coarse initialization, we perform a fine-scale non-rigid registration to 270

update the vertex positions H, such that the template model better fits the points 271

Q. Following the approach of [19], we minimize a non-linear objective function 272

E(H) = Efit(H) + λregEreg(Hprev,H) . (3)

The fitting term Efit penalizes squared distances between points qc on the point set 273
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Landmarks

Our data Stephan 2017

Glabella

Nasion

Rhinion

Mid-Philtrum

Prosthion

Infradentale

Supramentale

Pogonion

Menton

Mid-Supraorbitale

Mid-Infraorbitale

Zygion

Ectomolare2

Mid-Ramus

Ectomolare
2

Gonion

Mid-Mandibular Border

Fig 5. FSTT for commonly used midline and bilateral landmarks.
Landmarks defined by [17] as produced by our method (red dots) in relation to pooled
data from a recent meta-analysis [18] (weighted mean ± weighted standard deviation as
blue error bars).
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Q and corresponding points hc on the template model H: 274

Efit(H) =
1∑

c∈C wc

∑
c∈C

wc ‖hc − qc‖2 . (4)

The set of correspondences C consists mostly of closest point correspondences, which we 275

construct by finding for each scan point qc ∈ Q its closest surface point hc on the 276

template model, and which we filter by pruning unreliable correspondences based on 277

distance and normal deviation thresholds. To allow for more precise fits, we extend 278

these closest point correspondences by 70 facial landmarks in the face region, on the 279

ears, and on the lower jaw. These landmarks are manually selected on the template 280

model and on all scans to be fitted (note that this manual work is necessary during 281

model generation only). The per-correspondence weights wc are used to give the 282

landmarks a higher weight than the closest point correspondences, and to assign a lower 283

weight to surface regions that are not supposed to be fitted closely (e.g., hairs for 284

surface scans or CT artifacts due to teeth restorations). 285

The regularization term Ereg penalizes the geometric distortion of the undeformed 286

model Hprev (the result of the previous rigid/similarity transformation) to the deformed 287

state H. Since the template head is a surface mesh, we employ a discrete surface 288

deformation model that minimizes bending, discretized by the squared deviation of the 289

per-edge Laplacians 290

Ereg(Hprev,H) =
1∑

e∈E Ae

∑
e∈E

Ae ‖∆eh(e)−Re∆
ehprev(e)‖2 . (5)

Here, Ae is the area associated to edge e, and Re are per-edge rotations to best-fit 291

deformed and undeformed Laplacians (see [20] for details). In the spirit of non-rigid 292

ICP [19] we alternatingly compute correspondences and minimize (3), starting with a 293

rather stiff surface that is subsequently softened (by reducing λreg) to allow for more 294

and more accurate fits. Whenever λreg is decreased, we also update the rest state Hprev 295

by the current deformed state H. 296

From the 39 fits to the complete optical surface scans we construct a preliminary 297

parametric head model. Similar to the skull model generation, we stack the vertex 298

positions of each fitted head h = (x1, y1, z1, . . . , xn, yn, zn)
>

and compute a PCA model 299

of dimension d (d = 30 in our case), such that we can write 300

H(b) = h̄ + Vb, (6)

where h̄ is the mean head, V is the matrix containing the principal components in its d 301

columns, and b = (β1, . . . , βd) contains the PCA parameters representing the head. 302

With the preliminary PCA model at hand, we can now fit the template head to the 303

incomplete skin surfaces extracted from CT scans, where regions of missing data are 304

filled realistically by the PCA model. Fitting to a point set Q amounts to additionally 305

optimizing the PCA parameters b during the initial rigid/similarity transformation step. 306

To this end, we minimize squared distances of corresponding points, with a Tikhonov 307

regularization ensuring plausible weights: 308

EPCA(b) =
1∑

c∈C wc

∑
c∈C

wc

∥∥h̄c + Vcb− qc

∥∥2 +
λtik
d

d∑
k=1

(
βk
σk

)2

. (7)

In the fitting term, Vc and h̄c are the rows of V and h̄ representing the point hc 309

corresponding to qc, that is hc = h̄c + Vcb. We use λtik = 1 · 10−4 for the 310

regularization term, where σ2
k is the variance of the kth principal component. The 311
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optimal weights b are found by solving the linear least-squares problem (7). In step (1) 312

of the head fitting process we optimize for alignment (scaling, rotation, translation) and 313

for shape (PCA weights) in an alternating manner until convergence. Step (2), the 314

non-rigid registration, is then performed the same way as without the PCA model. 315

We finally combine the fits to the 43 CT scans and to the 39 surface scans into a 316

single parametric PCA head model. The variation of this model along the first two 317

principal directions is shown in Fig 6. While the first principal component basically 318

characterizes head size, the second principal component describes strong variation of 319

head shape within our training data.

pc 1

pc 2

pc 1

pc 2

pc 1

pc 2pc

pcpc 1

pc 2pc

Fig 6. Head variants along the two principal components with the largest
eigenvalues. We visualize h̄ + β1v1 + β2v2, where βi = bi · σi, i = 1, 2, is the weight
containing the standard deviation σi to the corresponding eigenvector vi, and the factor
bi ∈ {−2, 0, 2}.

320

In order to analyze the accuracy of our head fitting process, we evaluate the RMS 321

error for all 82 head scans: 322

rms(H,Q) =

√
1∑

c∈C wc

∑
c∈C

wc ‖hc − qc‖2.

This is similar to (4) and measures the distance between corresponding point pairs from 323

H and Q. Depending on our input data, we weight down regions that should not be 324

fitted closely (hairs, CT artifacts), such that these regions do not influence the error 325

measure too much. Averaging this error over all 82 scans gives an overall fitting error of 326

0.19 mm. Note that we prune unreliable correspondences above a distance threshold of 327

2 mm, which therefore are not considered for error evaluation. However, since the 328

overall fitting error is an order of magnitude smaller, it is not significantly influenced by 329

this pruning. 330

As done before for the parametric skull model, we also manually select 10 331

corresponding landmarks on the parametric head model, which are used for the 332

automatic forensic facial reconstruction. 333

Automatic forensic facial reconstruction 334

Our automatic forensic facial reconstruction process is based on the generated 335

parametric skull model, the statistic of FSTT, and the parametric head model, 336

PLOS 11/20



described in the previous sections. In the following, we use an anonymized CT scan of a 337

female subject with an age of 21 years to demonstrate the quality of our forensic facial 338

reconstruction. This CT scan was not used for constructing the parametric skull model, 339

head model, or FSTT statistic. The reconstruction process runs in three steps as shown 340

in Fig 7 and is explained in the following sections. 341

Input Skull Fitted Skull

Skull Model

Sphere Model

FSTT Model Head Model

Reconstructed Face

SKULL FITTING ADDING FSTT HEAD FITTING

Fig 7. Processing steps of the automatic forensic facial reconstruction. The
reconstruction of a face from a given input skull utilizing the generated parametric skull
model, the statistic of FSTT, and the parametric head model.

Skull fitting 342

Given scanned skull remains as input, the skull fitting process is very similar to the 343

registration process described in the section about generating the parametric skull 344

model. The main difference is that we are finally able to utilize the generated 345

parametric skull model (2) as a starting point for the subsequent deformation steps. 346

First, we compute a shape-preserving transformation which aligns the parametric skull 347

model to the given skull by using the global registration approach presented in [12]. To 348

further optimize the alignment we search for reliable point correspondences C between 349

the given skull and the parametric skull model and compute the optimal scaling, 350

rotation, and translation in closed form [21]. After optimizing the alignment, we 351

continue with optimizing the shape. Similar to the PCA fitting of heads (7) we are 352

looking for the coefficient vector a of the parametric skull model (2) with 353

EPCA(a) =
1

|C|
∑
c∈C
‖s̄c + Uca− pc‖2 +

λtik
d

d∑
k=1

(
αk

σk

)2

, (8)

where λtik = 1 · 10−3, σ2
k is the variance of the kth principal component k of the skull 354

model and d is the number of employed PCA components. Optimization for alignment 355

and shape is alternated until convergence, and before each optimization (alignment or 356

shape) we recompute point correspondences C. After this initialization, we continue 357

with non-rigid registration by minimizing (1). 358

Adding facial soft tissue thickness 359

Next we assign FSTT values based on our FSTT statistic to the fitting result of a given 360

skull. An important advantage of our approach is that our FSTT statistics only 361

contains scalar FSTT values without a particular measurement direction, such as skull 362

normal or skin normal, since these directions are hard to determine in a robust manner 363

due to noise or fitting errors. In our case the measured skin position, which is the 364

closest point on the skin surface for a vertex of the skull, is located on a sphere centered 365

at the skull vertex with radius being the corresponding FSTT value. Fig 8 (left) shows 366

a side view of the FSTT measurement results for few preselected points on the midline. 367
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Fig 8. FSTT for a given individual visualized as sphere model. At each skull
vertex a sphere with radius of the actual FSTT value from the ground truth data set is
drawn. From left to right: Some example spheres for points on the midline, union of all
spheres (in green) with original skin surface as overlay.

Knowing both the skull and the skin surface for a subject allows the computation of 368

the actual FSTT. Fig 8 (center and right) shows an overlay of the extracted skin surface 369

and the union of all spheres centered at the skull vertices and having as radii the 370

appropriate FSTT values, which we call the sphere model. The depicted sphere model is 371

based on the exact FSTT of this subject and provides a visually good approximation of 372

the real skin surface. Certainly, since nose and ears do not have a directly underlying 373

bony structure, this method does not provide this kind of information. Approaches for 374

prediction of nasal morphology, such as [22,23], give some hints about the nose, e.g., the 375

approximated position of the nose tip, but do not really create an individual nose shape 376

for a particular subject. In a real application scenario the age, sex and ancestry of the 377

individual are derived from its skeleton remains and a disaggregated FSTT statistic is 378

used for reconstruction. In our case the sample size is too small to build specific FSTT 379

statistics, so as an approximation we simply build the sphere model based on the mean 380

of our general FSTT statistics (cf. Fig 7). 381

Head fitting 382

Given a specific sphere model, the next step is to derive a facial profile from this data. 383

For this purpose we deform our parametric head model to the (under-specified) sphere 384

model. The fitting procedure is very similar to the generation of our parametric head 385

model. Similar as before, we initially align the sphere model with the parametric head 386

model. However, this time the landmarks on the fitted skull, which have been selected 387

during the skull model generation, are projected automatically onto the surface of the 388

sphere model as depicted in Fig 9. 389

The projected landmarks give us robust correspondences on the parametric head 390

model. They are automatically determined and replace the manually selected landmarks 391

used during model generation. We start by optimizing scaling, rotation, and translation, 392

as well as PCA parameters based on the set of landmarks. This initialization is followed 393

by a fine-scale non-rigid registration based on landmarks and closest point 394

correspondences between the parametric head model and the given sphere model. 395

While this process is very similar to the model generation phase, it differs in the 396

following point: We use the per-correspondence weights wc in the fitting energy (4) to 397

give points on the outer surface of the sphere model more influence than points in the 398

interior, since the former can be considered as an approximation to the skin surface that 399

we intend to fit. To this end, we first identify if a point qc on the sphere model is 400

outside from its corresponding point hc on the template head by checking 401
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Fig 9. Landmarks for the automatic facial reconstruction. From left to right:
Mean skull with preselected landmarks, sphere model based on mean FSTT with
projected landmarks, and mean head with preselected landmarks. The landmarks
consist of two midline landmarks and four bilateral landmarks, which are selected once
on the parametric skull and head model after model generation. The landmarks are
based on the proposed nomenclature of [17]: nasion and menton (from craniometry)
and mid-supraorbitale and porion (from craniometry) as well as ciliare lateralis and
ciliare medialis (from capulometric) and their corresponding counterparts on skull
respectively skin surface.

n>c (qc − hc) ≥ 0, where nc is the normal vector of hc. For such correspondences, we set 402

wc = 1 + 108 · ‖hc − qc‖ /B, where B is the bounding box size of model. 403

As mentioned before, nose and ears do not have a directly underlying bony structure. 404

Thus the sphere models do not provide any data for such regions. Utilizing a parametric 405

head model allows the reconstruction of nose and ears in a statistical sense, i.e., as an 406

element related to the underlying PCA space. 407

Generating plausible head variants 408

The simplest method for facial reconstruction is to fit the template head to a sphere 409

model based on the mean of the FSTT statistics. However, this approximation will 410

rarely match a specific subject. To get a reliable FSTT diversification for an individual, 411

we again adopt the PCA approach creating a parametric FSTT model 412

FSTT(c) = t̄ + Wc (9)

where t̄ is the mean FSTT, W contains the principal components of the FSTT, and 413

c = (γ1, . . . , γr−1) contains the PCA parameters. Using this parametric FSTT model, 414

we can create plausible FSTT variants for the given input skull. Since the CT scans 415

used for the statistic of FSTT are mostly missing the upper part of the calvaria, the 416

FSTT values obtained in this area are mainly very large and invalid. Thus we omit this 417

area for the construction of our parametric FSTT model (9), which results in partial 418

sphere models. Fig 10 (top) depicts a subset of the partial sphere models along the two 419

principal components with the largest eigenvalues for the given input skull. 420

Our head fitting process described above can be applied to the partial sphere models 421

without special adjustments. As depicted in Fig 10 (bottom) our approach is able to 422

generate plausible head variants based on the corresponding sphere models in Fig 10 423

(top). As we are using a parametric model of the complete head, the missing parts like 424

nose, ears and especially the skin surface above the calvaria, are reconstructed in a 425

statistical sense, i.e., as an element related to the underlying PCA space. 426
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Fig 10. Variants of plausible FSTT distributions for the anonymized given
skull. Top: Partial sphere model variants along the two principal components with the
largest eigenvalues: We visualize t̄ + γ1w1 + γ2w2, where γi = ci · σi, i = 1, 2, is the
weight containing the standard deviation σi to the corresponding eigenvector wi, and
the factor ci ∈ {−2, 0, 2}. Bottom: Head model fitted to these partial sphere models.

PLOS 15/20



Discussion and conclusion 427

In this paper we presented an automated method based on a parametric skull model, a 428

parametric head model, and a statistic of FSTT for reconstructing the face for a given 429

skull. The models we are using were derived from head CT scans taken from an existing 430

CT image repository and from 3D surface scans of real subjects. Our approach has 431

three main outcomes: (i) a dense map of FSTT (i.e., a soft tissue layer), (ii) a visual 432

presentation of a statistically probable head based on a statistic of FSTT and a 433

parametric head model, and (iii) a method to generate plausible head or face variants, 434

respectively. 435

The main advantage of our approach over landmark-based FSTT measurements (see 436

references in [18]) is the density of the FSTT map without the need of error-prone 437

normal information. For any vertex of the parametric skull model a FSTT value can be 438

derived from the statistic of FSTT. It is important to note that the statistical 439

evaluation of the FSTT is fully automatic without any manual interaction. This is 440

different from other FSTT assessments based on CT data, which often still rely on 441

error-prone manual measurements (see, e.g., [24]). The fully automated method 442

introduced here can help to generate a more accurate database in the future, largely 443

overcoming the accuracy issues well-known for manual, landmark-based FSTT 444

assessments [8]. However, as our method is based on CT scans, it is still prone to 445

typical artifacts and gravity effects due to supine patient position. Although our 446

statistic of FSTT so far is generated from only 43 CT scans, the data we derived (Fig 5) 447

clearly indicate good agreement with data just recently published in a 448

meta-analysis [18]. If enough appropriate CT scans are available, rapid processing by 449

means of an automated pipeline can aid the creation of a large statistical database. It 450

seems most likely that methods such as the one introduced here constitute the future for 451

the generation of statistical models from 3D medical imagery. Therefore, enlarging the 452

database will be part of our future work to generate a more precise statistic. 453

A statistic of FSTT plays a significant role in facial approximation [8] and is also an 454

integral part of modern orthodontic treatment planning [24,25]. For forensic 455

reconstruction, it forms the basis for further steps in the reconstruction process. The 456

advantage of our approach in comparison to other automated methods [3–7] is that our 457

facial reconstruction process is fully automated. The only manual steps done in our 458

approach are during the model generation processes. As mentioned before, our statistic 459

of FSTT is independent of the measurement direction and thus we utilize sphere models 460

in the reconstruction process. Therefore, error-prone strategies such as averaging over 461

normal vectors to define a measurement direction are completely avoided. Moreover, 462

our parametric FSTT model allows us to create plausible head variants in a statistical 463

sense, which do not require any prior knowledge. 464

Subsequently, future work will concentrate on merging the two pathways (parametric 465

skull and head model) by integrating all statistical information into one combined model. 466

This model could then be used for various purposes, such as forensic applications, 467

demonstrations for medical procedures, yet also for realistic animations in movies. 468

In conclusion, the automated technique suggested in this paper aids recognition of 469

unknown skull remains (e.g. see Fig 11) by providing statistical estimates derived from a 470

CT head database and 3D surface scans. By creating a range of plausible heads in the 471

sense of statistical estimates, a “visual guess” of likely heads can be used for recognition 472

of the individual represented by the unknown skull. Compared to clay-based 473

sculpturing, which depends on the ability of the operator, our method provides a good 474

approximation of the facial skin surface in a statistical sense (see Fig 12). Nevertheless, 475

the quality of the reconstruction depends on the sample size of the statistic. In order to 476

use additional descriptive factors (e.g., age, sex, ancestry, weight, or skeletal 477

classes [26]), a larger sample size representing the variance of each of the factors is 478
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required. We thus aim to enlarge our skull and head database to further elaborate on 479

the method introduced here. Part of our future work is the evaluation of accuracy and 480

recognition of a reconstruction based on our method. Inspired by the approach of 481

Miranda [27], we are planning to collect existing CT datasets and frontal standardized 482

photographs, which are voluntarily donated by subjects for publication and the 483

assessment of accuracy as well as recognition. 484

Fig 11. Skull fitting results for a given skull. Extracted skull from CT (left) and
fitted skull (right).
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