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Abstract
We present a compact and intuitive geometry representation for technical models initially given as triangle meshes. For CAD-
like models the defining features often coincide with the intersection between smooth surface patches. Our algorithm therefore
first segments the input model into patches of constant curvature. The intersections between these patches are encoded through
Bézier curves of adaptive degree, the patches enclosed by them are encoded by their (constant) mean and Gaussian curvatures.
This sparse geometry representation enables intuitive understanding and editing by manipulating either the patches’ curvature
values and/or the feature curves. During decoding/reconstruction we exploit remeshing and hence are independent of the
underlying triangulation, such that besides the feature curve topology no additional connectivity information has to be stored.
We also enforce discrete developability for patches with vanishing Gaussian curvature in order to obtain straight ruling lines.

CCS Concepts
• Computing methodologies → Mesh geometry models;

1. Introduction

When creating virtual or physical objects cooperatively as a team
(human-human or human-machine) different design targets of each
actor are processed on different levels of geometric abstraction,
e.g., surface modeling in CAD teams or triangulated mesh mod-
eling in simulation teams. Unfortunately, in the low-level mesh do-
main the high-level design features of the CAD geometry are no
longer accessible, making it difficult to communicate design ma-
nipulations and intentions. In the high-level CAD domain, the ge-
ometric shape is the primary design target, and the mesh model
resulting from a tessellation engine is often of secondary concern,
sometimes leading to rather coarse triangulations with poor ele-
ment quality.

Automatic conversion between these two geometry representa-
tions is still a challenging topic, in particular the conversion from
a triangle mesh to a higher-level CAD representation. We there-
fore aim for an intermediate geometry representation that reveals
the high-level design intentions underlying the initial CAD geom-
etry by analyzing a given input triangle mesh and extracting an
as-compact-as-possible set of intuitive geometric parameters. This
novel geometry representation on the one hand captures the major
design features (like a CAD model) and on the other hand provides
a high-quality tessellation (like a mesh model). Since the decod-
ing of our representation into a triangle mesh incorporates auto-
matic remeshing, the representation itself is agnostic to the low-
level mesh connectivity.

A compact and sparse geometry representation is not just more
intuitive for the user, who then has to deal with less but more intu-

itive parameters. It should also enable machine learning approaches
to be trained from fewer examples, and thereby remedy the prob-
lem of obtaining a sufficient number of high-quality training data
for geometric learning. Even intuitive surface editing by adjusting
the model parameters is possible with our representation. However,
we do not explore learning and manipulation in this paper, but in-
stead focus on the compact model representation itself as well as
the encoding and decoding methods.

Given an input triangle mesh that represents a technical CAD-
like model, our encoding phase first segments the model into
patches of (nearly) constant curvature. We achieve a robust seg-
mentation even in the presence of coarsely tessellated models with
poorly shaped triangles by observing that the patches of constant
curvature consist of planes, cylinders, and spheres only [KO67]. In-
stead of computing and clustering (approximate) curvature values,
we therefore detect the surface patches using a customized version
of variational shape approximation [CSAD04, WK05]. The inter-
section curves between the extracted patches contain the defining
feature curves of the geometric model and are encoded as Bézier
curves of adaptive degree. The surface patches are encoded by stor-
ing their (constant) curvature values. Besides this geometric infor-
mation, we only store the coarse patch connectivity, which we de-
termine by aggressive mesh decimation [GH97].

During the decoding phase, we first read the coarse connectivity
graph, sample the features curves from their Bézier representation,
and generate a sufficiently dense high-quality triangulation through
uniform remeshing [DVBB13]. We then numerically optimize the
vertex positions to satisfy the stored per-patch curvature values
through a combination of the FiberMesh approach [NISA07] and
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Figure 1: Overview of our encoding and decoding framework. The initial mesh (a) is segmented into patches of constant curvature (b)
leading to planes (orange), cylinders (blue), boundary curves (red), and Bézier control points (green). Aggressive decimation reveals the
minimum connectivity graph of the patch corners (c). The decoding phase after loading, curve sampling, patch triangulation and remeshing
(d) and after enforcing patch curvatures (e).

the curvature-based optimization of Eigensatz et al. [ESP08,EP09].
The approximation error of our representation can be easily con-
trolled by prescribing the geometric tolerance for the patch cluster-
ing and curve fitting steps.

The resulting sparse geometry representation, besides being
more compact than previous approaches, consists of geometrically
intuitive parameters only, which enables geometric modeling by
manipulating a few high-level parameters, as we demonstrate in
Section 5. In the following we first discuss related approaches (Sec-
tion 2), before describing the encoding and decoding phases in Sec-
tion 3 and Section 4, respectively.

2. Related Work

This work is inspired by the idea that many man-made objects
can be described by a sparse collection of characteristic feature
curves [SF98]. This idea was successfully combined with sketch-
based modeling in the FiberMesh approach [NISA07], thereby
fully defining an entire object. iWires [GSMCO09] equip the fea-
ture curves with additional information about their shape and re-
lation to other curves, such that high-level structure editing can
be performed without compromising feature and shape properties
of the input model. Another approach is to analyze a given input
shape by approximating it by a set of geometric primitives, which
could be simple planar proxies [CSAD04] or more complex spher-
ical or cylindrical proxies as well as rolling ball blends [WK05].
Those features can further be enhanced by detecting global symme-
tries [MGP06] or other relations between feature curves or surface
patches [LWC∗11].

Given extracted feature points and curves, many surface patches
can intuitively be described by certain energy minimizing be-
haviors subject to boundary constraints [WW92]. Botsch and
Kobbelt [BK04a] provide an intuitive framework for minimizing
(the change of) surface area, surface curvature, or curvature vari-
ation. While a surface (or a triangle mesh) is typically described
by assigning a 3D position to each uv-parameter (or each ver-
tex), it can also be determined (up to rigid motion) by speci-
fying first- and second-order derivative information (fundamental
forms, metric, curvatures) at each parameter [ESP08, EP09]. Zhou
et al. [ZWS11] extend this modeling method by altering the ex-

tracted feature curves [HPW05] and restoring the curvature values
in the affected regions by a subsequent numerical optimization.

Developable surfaces, having vanishing Gaussian curvature ev-
erywhere, are attractive for physical manufacturing as they can be
created by bending flat pieces. Solomon et al. [SVWG12] present a
framework that enforces developability at every step during shape
manipulation. A more recent definition of developability for trian-
gle meshes, which drives a given mesh towards developable pieces,
is provided by Stein et al. [SGC18].

When it comes to compact mesh representations, the approach of
Lavoué and colleagues [LDB05,LDB07] is conceptually most sim-
ilar to ours. They segment the given model into surface patches of
constant curvature and extract subdivision curves and subdivision
patches as a compressed geometry representation. Their decoder,
however, does not exploit the (initially known) per-patch curvature
values, but instead defines the surface solely through a subdivision
process, which might lead to less accurate reconstructions (see the
convex outer rim of the model shown in Fig. 17e of [LDB07]). Sim-
ilar to the approach of Lavoué et al. [LDB05, LDB07], our method
is specifically tailored for technical models that are composed of
smooth surface patches with clean boundary curves. However, we
do not put any requirements on the quality of the tessellation and
can process input meshes with poorly shaped triangles.

Even though our method converts a given triangle mesh into a
more compact representation, mesh compression is not our primary
goal. While compression approaches might accept lossy compres-
sion of geometry (vertex positions), they typically require lossless
compression of mesh connectivity [MLDH15], with very few ex-
ceptions: Szymczak et al. [SRK02] and Attene et al. [AFSR03]
change the surface triangulation to achieve better compression rates
for the connectivity encoding [Ros99,TG98,AD01]. Our approach,
in stark contrast, aims to be agnostic to the underlying triangulation
by completely replacing the input tessellation with a high-quality
isotropic remesh. While our method also leads to a certain com-
pression effect, our main goal is to represent the input model with
few and geometrically intuitive parameters.

Our method consists of two algorithmic parts: encoding a given
triangle mesh into our novel representation and decoding the result-
ing sparse geometry representation into a triangle mesh. Figure 1
visualizes the main steps of our method.
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Figure 2: Encoding pipeline: (a) Initial mesh with sharp feature edges. (b) Segmentation into constant curvature patches (planes: orange,
cylinders: blue, boundary curves: red). (c) Bézier control points for feature curves (green). (d) Minimum connectivity graph of corner vertices.

3. Encoding

The encoding phase starts by extracting sharp feature edges and
vertices (Section 3.1), which then constrain the subsequent steps,
e.g., the initial seeding for the segmentation algorithm. Then
patches of (nearly) constant curvature are extracted based on cus-
tomized variational shape approximation (Section 3.2). Afterwards
feature corners, i.e., vertices where more than two patches meet,
are extracted and Bézier curves are fitted to the feature curves con-
necting two corner vertices along patch boundaries (Section 3.3).
Finally, the mesh is aggressively decimated, leaving only the con-
nectivity graph of the corner vertices in form of a general polygon
mesh (Section 3.4). The final sparse representation stores the po-
sitions of feature corners, the Bézier representation of the feature
curves, the (constant) mean and Gaussian curvature per patch, and
the connectivity graph of corner vertices.

3.1. Sharp Feature Extraction

In a pre-processing step we detect sharp feature edges based on the
dihedral angle between their adjacent faces. We define an edge to
be a feature edge if the normal vectors of its two adjacent triangles
form an angle higher than a given threshold. This threshold can
be chosen rather loosely to decrease the chance of false positives,
which would later lead to unnecessary patch boundaries and a less
compact encoding.

The extracted feature edges typically are (a super-set of) the fea-
ture curves between the piecewise-smooth surface patches (see Fig-
ure 2a). We detect these edges in order to exclude them from the
later curvature computation and clustering, since curvature infor-
mation is not well-defined on feature edges.

Unlike [LDB07] we do not need to enrich the input mesh based
on detected feature edges in order to improve the robustness of
curvature computation, since we do not compute curvatures (see
below). Instead, we only use the extracted sharp feature edges to
guide the initial seeding of the segmentation algorithm.

3.2. Segmentation

Given the previously extracted feature edges we now segment the
mesh into patches of (nearly) constant curvature. In contrast to
Lavoué [LDB07], however, we avoid the explicit computation of
per-vertex or per-face curvature values, since those computations of
second-order derivative information become unreliable for poorly

tessellated models and therefore require sophisticated preprocess-
ing/enrichment, which in turn might alter the true curvature values.

We instead observe that patches of constant mean and Gaus-
sian curvature consist of planes, cylinders, and spheres only, as
discussed by Klotz and Ossermann [KO67]. Those primitives can
be very robustly detected based on positional information only. To
this end, we adopt the popular hybrid variational shape approxima-
tion [WK05], which is a variant of Lloyd’s clustering and consists
of the two alternating phases partitioning and fitting. Given an in-
put meshM, a partitioning R into regions Ri is computed. Each
region Ri contains a set of triangles {t j} with barycenters {g j}.
Each region is approximated by a shape proxy, which may be one
of the following primitives:

• Planes Pi = (xi,ni), defined by the region’s barycenter xi and an
average normal vector ni,
• Spheres Si = (ci,ri), defined by center ci and radius ri,
• Cylinders Ci = (xi,di,ri), defined by a point xi on the cylinder

axis, the axis direction di, and the radius ri.

Thus the full proxy set is defined as P = {Pi} ∪ {Si} ∪ {Ci}.
We omit the rolling-ball blends of [WK05] since these do not have
constant curvature. The total approximation error is defined as

E(R,P) = ∑
i

E(Ri,Pi) ,

where Pi is the best-fitting shape proxy, i.e., the optimal plane Pi,
sphere Si, or cylinder Ci that minimizes the fitting error within the
region Ri. If not otherwise specified, we always use the L2,1 met-
ric [CSAD04]:

E(Ri,Pi) = ∑
t j∈Ri

∣∣t j
∣∣ ·∥∥n

(
t j
)
−Ni

(
t j
)∥∥2

, (1)

with n
(
t j
)

being the normal vector of triangle t j and
∣∣t j
∣∣ its area.

Ni
(
t j
)

denotes the normal of proxy Pi evaluated at triangle t j,
which is the average normal ni for planes, g j− ci for spheres, and
g j − πCi(g j) for cylinders (where πCi(g j) is the projection of g j
onto the axis of the cylinder Ci). The direction of Ni might have
to be flipped to minimize the approximation error. Since (1) does
not consider positions, it cannot distinguish parallel planes. For our
region growing, however, it is fully sufficient though.

We use the same robust least-squares method [Pra87] for fitting
spheres and cylinders as in [WK05], with the exception that we do
not use the minimum curvature directions to compute the cylinder
axis di, as there may not be any non-feature vertices in a given
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region due to coarse/poor triangulation. Instead we compute the
cylinder axis di as the eigenvector corresponding to the smallest
eigenvalue of the normal covariance matrix

∑
j

∣∣t j
∣∣ ·n(t j

)
n
(
t j
)T

.

Weighting by triangle areas ensures independence of the underlying
triangulation.

For spheres, the fitting is done by minimizing

E(A,B,C,D,E) = ∑
j

f
(

g j

)2 ∣∣t j
∣∣ (2)

under the constraint B2 +C2 +D2−4AE = 1 and with

f (x,y,z) = A(x2 + y2 + z2)+Bx+Cy+Dz+E = 0

being the implicit sphere representation.

For cylinders, the barycenters g j are projected onto the plane
P passing through the origin with normal vector di, resulting in
projected positions π(g j). Then a circle is fitted to these projected
barycenters by minimizing

E(A,B,C,D) = ∑
j

f
(

π(g j)
)2 ∣∣t j

∣∣ (3)

under the constraint B2 +C2−4AD = 1 and with

f (x,y) = A(x2 + y2)+Bx+Cy+D

being the implicit circle representation.

Minimizing (2) or (3) results in solving a 5× 5 (respectively
4×4) general eigensystem by using Lagrange multipliers, with the
solution being the eigenvector corresponding to the smallest eigen-
value. The primitive parameters can then be computed as

ci =−
1

2A
(
B,C,D

)T and r2
i = ‖ci‖2− E

A

for spherical proxies and

x⊥i =− 1
2A

(
B,C

)T and r2
i = ‖ci‖2− D

A

for cylindrical proxies.

The complete segmentation process is conceptually similar to k-
means clustering and consists of the following four steps:

1. Initial seeding: We use the extracted sharp feature edges (see
Section 3.1) to guide the initial seeding of the segmentation.
We take one random triangle out of every fully enclosed region
as initial seed. If there are no enclosed regions we start with
two random triangles, because at least two regions are needed
to extract any boundaries. Each seed is initially approximated
by a plane Pi.

2. Region growing: Starting from the seed triangles, new regions
are grown in a breadth-first manner by considering all un-
conquered triangles incident to a region boundary and adding
the triangle with least approximation error (1) to its best-fitting
region. The region proxies Pi are kept fixed during the region
growing, which is implemented through a priority queue.

3. Fitting primitives: Once all triangles have been assigned to a
region Ri, we fit planes, spheres, and cylinders to all triangles
t j ∈Ri. Each region is then assigned the primitivePi that results
in the least approximation error (1).

4. New seeding: From each region the best-fitting triangle accord-
ing to its approximation error (see (1)) is detected. These tri-
angles serve as new seeds for the next region growing phase.
Furthermore, the worst-fitting triangle out of all mesh triangles
is extracted. If the segmentation has settled in a local minimum,
this triangle is added as a new seed, initially approximated by a
new plane Pi.

Steps 2–4 are repeated until convergence. Convergence is reached
if the error of the worst triangle (Step 4) is less than a user-defined
threshold or if a given maximum number of iterations is reached.

For increased numerical robustness, the curvature values Hi and
Ki (mean and Gaussian curvature) associated to the region Ri are
not computed based on the (potentially poor) triangulation, but in-
stead derived from the curvature of the fitted primitive, i.e., Hi =
Ki = 0 for planes, Hi =

1
ri

and Ki =
1
r2

i
for spheres, and Hi =

1
2ri

and Ki = 0 for cylinders. Figure 2b visualizes an exemplary seg-
mentation of a typical CAD model.

Unlike [WK05] we do not use the fitted primitives to de-
scribe/encode the given mesh. Instead, we fit Bézier curves to the
boundaries between the extracted regions and use the curvature val-
ues of the primitive as new geometry representation. Reconstruct-
ing these curvature values in the least squares sense then distributes
the approximation error evenly over the surface patches.

3.3. Corner vertices and boundaries

We denote by C the minimal set of corner vertices that are needed to
describe the patch connectivity of the input mesh. Any vertex where
more than two different patches meet is considered a corner vertex.
We then trace the edges along each patch boundary to extract a
boundary set B. Each boundary consist of an edge strip connecting
two corner vertices.

We then fit a Bézier curve Bn(s) to each boundary curve in an
adaptive least squares manner. To this end we uniformly sample
the chain of edges defining the boundary curve, leading to positions
x1, . . . ,xN , and use their (normalized) discrete arc lengths long the
edge chain as parameter values ti. We then determine the control
points c j by a least squares fit, i.e., by minimizing

min
c2,...,cn−1

1
N

N

∑
i=1

∥∥∥∥∥ n

∑
j=1

c jB
n
j(ti) − xi

∥∥∥∥∥
2

The two corresponding corner vertices define the end-points of the
Beziér curve and therefore determine the first and last control point
c1 and cn, respectively. We determine the required polynomial de-
gree n in an adaptive manner: We start from degree n = 1 and in-
crease the polynomial degree n until the root-mean-square (RMS)
approximation error is below a user defined threshold. To avoid os-
cillations due to high-degree polynomials, we split the boundary
curve if the degree would increase beyond 4. When splitting the
boundary the vertex with the largest error serves as new corner ver-
tex, thereby producing two new boundaries.
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(a) (b) (c)

Figure 3: Decoding pipeline: Starting from the minimal connectivity graph (a) we triangulate its faces and apply uniform remeshing (b),
before optimizing the vertex positions to meet the stored per-patch curvature values (c) Note the vanishing of the dent in the top cylindrical
part from (b) to (c).

Note that more accurate boundary fits could be achieved by (i)
using rational Bézier curves, since those can represent circular arcs
and cone sections exactly, and (ii) interleaving fitting with parame-
ter correction of the ti. However, we found our simple least squares
fits to be sufficiently accurate for our experiments.

There may remain some boundaries between patches without
any corner vertices along them, e.g., a patch fully enclosed by
another patch. In such a case we split this boundary into three
parts: First, we fit a Bézier curve to the boundary while using a
random vertex as start point and end control point. We then sam-
ple the Bézier curve at s = 1

3 and s = 2
3 and find the vertices on

the boundary curve with the smallest distance. Finally, these two
vertices together with the initial random vertex form new corner
points with three boundaries in between them. These new bound-
aries are also subject to the splitting mentioned above. Figure 2c
visualizes the resulting Bézier control points for approximating the
feature/boundary curves.

3.4. Decimation and final representation

As the final step of the encoding a minimal connectivity graph of
the corner vertices is computed. We utilize aggressive decimation
following the approaches of Garland and Heckbert [GH97] and
Kobbelt et al. [KCS98]. We preserve the boundary curve connectiv-
ity by only collapsing edges that have both vertices either on a com-
mon boundary or not on a boundary. Corner vertices remain fixed.
The result is a minimum-connectivity triangle mesh. We further re-
duce the connectivity graph by deleting any non-boundary edges
when the deletion does not destroy the mesh topology, since we
can always re-triangulate the mesh during decoding. An example
of a resulting minimal polygon mesh is shown in Figure 2d. The fi-
nal sparse representation stores the positions of the corner vertices,
the Bézier control points (excluding the corner positions), the (con-
stant) mean and Gaussian curvature per patch, and the polygonal
connectivity graph of the corner vertices.

4. Decoding

In the decoding phase we first load the corner vertices, their con-
nectivity graph, and the per-boundary Bézier curves from a file.
The boundary curves are then uniformly sampled according to their
Bézier representation, leading to an initial coarse polygon mesh

with very high face degree. Those polygons are subsequently tri-
angulated and remeshed, providing enough vertices per patch to
approximate the geometry (Section 4.1). The correct geometry is
finally reconstructed by optimizing the positions of the inner patch
vertices such that their curvature values meet the prescribed per-
patch curvatures (Section 4.2). As a final polishing we enforce dis-
crete developability to obtain straight ruling lines in patches with
zero Gaussian curvature [SGC18] (Section 4.3).

4.1. Sampling, triangulation, and remeshing

Starting with the connectivity graph of the corner vertices (Fig-
ure 3a), the boundary Bézier curves are uniformly sampled (us-
ing the stored control points), thereby refining the edges of the
connectivity graph to meet the geometry of the original bound-
ary curves. The resulting high-degree polygons of the connectiv-
ity graph are then triangulated by minimizing dihedral angles and
surface area, following the approach of Liepa [Lie03]. A uniform
isotropic remeshing [BK04b] yields enough degrees of freedom
(i.e., mesh vertices) to approximate the original per-patch geom-
etry through high-quality close-to-equilateral triangles. Figure 3b
visualizes a resulting refined triangle mesh.

While we let the user control the target edge length, one could
also derive the required per-patch edge length from a prescribed
error tolerance and the known per-patch curvature values, using the
adaptive isotropic remeshing of [DVBB13].

4.2. Curvature Optimization

Given the initial geometry approximation we now solve for the po-
sitions xk of the inner vertices (not lying on a feature/boundary
curve) such that the prescribed curvature values Hi and Ki of each
patch region Ri are met (see Section 3.2). We employ the Fiber-
Mesh approach [NISA07] to enforce the mean curvature values be-
cause of its robustness and fast convergence. This involves to min-
imize the difference between the current per-vertex Laplacian ∆xk
and a target Laplacian, which itself is computed as the mean cur-
vature normal based on the prescribed per-patch mean curvature Hi
and the vertex normal n(xk):

min
{xk}

∑
i

∑
xk∈Ri

‖∆xk−2Hin(xk)‖2 , (4)

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.



L. Kammann, S. Menzel, M. Botsch / A Compact Patch-Based Representation for Technical Mesh Models

initial encoded time time Hausdorff

#V #F #int #float #V #F #int #float encode decode error

Joint 221 446 1338 663 30 18 254 237 13 ms 27 s 1.1 ·10−3

Oblong 422 840 2520 1266 73 46 658 518 58 ms 16 s 2.3 ·10−3

Anchor 519 1050 3150 1557 66 40 562 517 59 ms 8.4 s 1.3 ·10−3

Pinion 650 1300 3900 1950 126 66 1130 816 143 ms 7.9 s 1.2 ·10−3

Coupling 1841 3714 11142 5523 188 98 1675 2075 46 ms 13 s 3.0 ·10−3

Fandisk 6475 12946 38838 19425 40 22 362 389 746 ms 8.3 s 7.7 ·10−3

Table 1: Mesh complexity (as numbers of vertices and faces) and memory consumption (in terms of numbers of 32-bit int-indices and
float-coordinates) of the initial and the encoded models, the computation time for encoding and decoding, as well as the bounding-box-
relative Hausdorff error between the initial and encoded/decoded models.

We solve this minimization problem by decoupling the vertex posi-
tions xk and their normal vectors n(xk) in an alternating optimiza-
tion approach [NISA07].

We enforce the Gaussian curvature by adopting the method of
[ESP08, EP09]. The principal curvatures κ1, κ2 of a vertex xk are
computed using the curvature tensor method of [CSM03]. We then
minimize the difference between the current Gaussian curvature
K(xk) = κ1κ2 and the target per-patch Gaussian curvature Ki, for
all regionsRi of all types (planes, cylinders, spheres):

min
{xk}

∑
i

∑
xk∈Ri

‖K(xk)−Ki‖2 . (5)

To increase the robustness of the geometry reconstruction we split
the optimization into two parts: We first minimize (4) to obtain a
piecewise smooth surface. In the second step we optimize for mean
curvature (4) and Gaussian curvature (5) simultaneously. This suc-
cessfully enforces the curvature values of the patch (see Figure 3c).

4.3. Developability Optimization

In many industrial applications it is desirable to have a model
made from developable pieces, since those that can be created by
smoothly bending planar surface pieces (e.g., a piece of paper)
without stretching or shearing and thus are easy to manufacture.

For developable patches, which are identified by vanishing Gaus-
sian curvature Ki = 0, we enforce discrete developability in a post-
process based on the method of Stein et al. [SGC18]. Since flat-
tenability alone is not sufficient to ensure easy fabrication, e.g., a
crumbled piece of paper, Stein and colleagues enforce straight rul-
ing lines passing through each surface point. According to their
definition, a surface is discrete developable if every vertex star is a
hinge, i.e., the adjacent faces of a vertex can be partitioned into two
edge-connected regions over which the face normals n

(
t j
)

are con-
stant. This alignment can be quantified by the smallest eigenvalue
λk of the per-vertex normal covariance matrix:

∑
t3xk

θt,kn(t)n(t)T ,

where θt,k denotes the opening angle of triangle t at vertex k. De-
velopability is then measured by summing over all λk. Minimiz-
ing this measure by optimizing vertex positions yields piecewise

Figure 4: Enforcing per-patch discrete developability. Left: Trian-
gle mesh after curvature-based optimization. Right: Piecewise dis-
crete developable surface with straight(ened) ruling lines.

developable surfaces (see Figure 4). Starting from the curvature-
optimized mesh (Section 4.2) considerably improves the robustness
of this rather sensitive nonlinear minimization.

5. Results

We have tested our algorithm on several technical CAD-like models
while measuring reconstruction error as well as compression rate.
For better comparison we scale all input meshes to a bounding box
with unit diagonal. If not stated otherwise we set the maximum
boundary error (see Section 3.3) to 5 ·10−4.

Figure 5 visualizes our encoding/decoding on different models
(without the developability optimization of Section 4.3). There of-
ten is virtually no visual difference between the initial and recon-
structed model. On some model cylindrical regions are even better
approximated as in the initial input mesh—an effect that we can
control through the user-prescribed approximation tolerance. We
are able to achieve a high compression rate paired with low Haus-
dorff error, as shown in Table 1. Real-world applications might re-
quire a smaller error tolerance, which can easily be controlled by
the user. As also shown in the table, our encoding results are well
below one second, while the decoding, due to the involved remesh-
ing and nonlinear optimization, might take from 8 to 30 seconds
(measured on an 8-core Intel Xeon 3.6 GHz with 8 GB RAM).

Regarding the encoding part, we achieve comparable results
to similar approaches like the method proposed by Lavoué et
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Figure 5: Encoding and decoding for different models, showing
for each model the input mesh (left), segmented patches (center),
and reconstructed model (right). Model names from top to bottom:
Joint, Oblong, Anchor, Pinion, Coupling, Fandisk.

al. [LDB05]. While their coarse representation of the Fandisk
model contains 75 vertices and 89 faces (see Fig. 10 of their pa-
per), we need only 40 vertices and 22 faces. Since their method is
targeted toward compact storage, they further compress connectiv-
ity and geometry of this coarse mesh, thereby achieving impres-
sive compression rates. Our goal is not a compact representation in
terms of required bits per vertex, but in terms of the number of mesh
elements and geometric parameters. Hence, we did not implement
further compression of our representation, but leave that as poten-
tial future work. Another difference to Lavoué et al. [LDB05] is that
our method does not require non-feature vertices in patch interiors,
since we do not directly cluster vertices based on their curvature.
Therefore we are able to robustly handle even poorly triangulated
meshes, as is often the case for tessellated CAD models, without
requiring a dedicated mesh enrichment as in [LDB05]. This prob-
lematic case is depicted in Figure 6.

6. Conclusion

We presented a method for analyzing a given input triangle mesh
and encoding it into a compact and intuitive sparse geometry rep-
resentation. We robustly detect patches of constant curvature based
on the hybrid variational shape approximation technique [WK05].
Boundaries between the resulting patches are extracted and en-
coded as Bézier curves of adaptive degree. Reconstruction is as
simple as sampling the Bézier curves, triangulating and remeshing
the sparse connectivity graph, and solving for the inner vertex posi-
tions. The approximation quality is easily controlled by prescribing
an approximation tolerance.

For future work, the extension to patches of non-constant curva-
ture is enticing. The segmentation process can easily be extended to
other simple primitives like cones or tori. It will be interesting (and
challenging) to investigate patches of harmonic surface distribution
(e.g., with ∆H = 0, being conceptually similar to clothoid curves).

In terms of future applications, we want to explore the potential
of our sparse representation for user-controlled interactive shape
manipulation as well as for geometric learning approaches, since
we expect both applications to benefit from our sparse representa-
tion with geometrically intuitive parameters.
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