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Figure 1: Virtual character addresses observer. Screenshots show, left to right, static face, synthesized expression, and tracked
expression. In our study, animation was either in sync with audio or delayed by the animation system’s inherent latency.

ABSTRACT
We report a mixed-design study on the effect of facial animation
method (static, synthesized, or tracked expressions) and its syn-
chronization to speaker audio (in sync or delayed by the method’s
inherent latency) on an avatar’s perceived naturalness and plau-
sibility. We created a virtual human for an actor and recorded
his spontaneous half-minute responses to conversation prompts.
As a simulated immersive interaction, 44 participants unfamiliar
with the actor observed and rated performances rendered with
the avatar, each with the different facial animation methods. Half
of them observed performances in sync and the others with the
animation method’s latency. Results show audio synchronization
did not influence ratings and static faces were rated less natural
and less plausible than animated faces. Notably, synthesized expres-
sions were rated as more natural and more plausible than tracked
expressions. Moreover, ratings of verbal behavior naturalness dif-
fered in the same way. We discuss implications of these results for
avatar-mediated communication.
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1 INTRODUCTION
We use language with bodily motion to express our thoughts, ideas,
and internal states. This gesture-speech unity plays a crucial role
in conveying information, both with and without intention [40].
Facial expressions play a prominent role among other nonverbal be-
haviors, such as posture, proxemics, and paralinguistics. They also
contribute to verbal behavior and are visible in most situations. Hu-
man face movements have been investigated in depth, often using
the Facial Action Coding System (FACS) to deconstruct expressions
into their underlying components based on anatomical movements
[6]. For example, lip movement fosters speech comprehension [20],
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and expressions on the level of micro-facial movements indicate
deception [19]. Human eye morphology even facilitates perceiving
gaze direction[14]. Gaze direction is used as input to detect infor-
mation about our environment and as output to signal attention
[9] and regulate interaction [13].

The importance of facial expressions carries over to how (virtual)
humans are perceived in virtual, augmented, and mixed reality
scenarios (VR, AR, MR - XR for short). Here, virtual humans are
usually classified depending on agency as either avatars (controlled
by human input) or embodied agents (controlled algorithmically)[3].
In immersive interpersonal communication, like in physical reality,
faces are at the center of attention and crucial to conversation
results [24, 30]. Behavioral and visual fidelity of virtual humans has
shown to be important to XR experiences’ realism, plausibility, and
presence and incorporated into several models thereof [15, 34, 35].

Recent progress in 3D reconstruction methods allows affordable
creation of virtual humans [4], even allowing to attune their facial
expressiveness to personal idiosyncrasies [21]. While this high vi-
sual fidelity can be achieved with consumer hardware, behavioral
fidelity in XR setups is most commonly restricted to microphone
input and tracking three devices in 3D space (typically two hand
controllers and a headset). Newer headsets provide facial expres-
sion tracking, and existing ones can be modified with external
hardware to do so. As an alternative, facial expressions can also
be synthesized from audio and head movements. To decide which
approach to follow, it is important to compare the effect of tracking
expressions to synthesizing them on naturalness and plausibility.
More natural and more plausible nonverbal behavior could improve
the experience of interpersonal communication in XR. It is also
relevant to compare facial animation methods with and without
their inherent latency.

To investigate this, we compare the perception of facial expres-
sions captured with ARKit, Apple’s face tracking solution, to ex-
pressions created with the Oculus Avatar SDK, Meta’s widely used
system for facial expression synthesis based on speaker audio, head
movement, and tagged gaze targets, to a baseline of a static face. We
let participants observe an avatar’s short performances in VR and
rate them in terms of naturalness and plausibility. Performances
are either shown with their original latency or in-sync with audio.

2 RELATEDWORK
Several approaches have been used tomake virtual faces come to life
that we roughly divide into either expression tracking or expression
synthesis. Exemplary works for synthesized expressions include an-
imated eyes being preferred over static eyes when viewing oneself
in a virtual mirror [5] and veridical gaze preferred over synthe-
sized gaze in a dyadic avatar-mediated interaction [31]. Gonzalez-
Franco and colleagues showed increased self-identificationwith self-
avatars’ pre-baked animations [10]. Murcia-López and colleagues
let participants select animation parameters for stylistic characters
that are included in the Oculus Avatar SDK [22]. It activates blend-
shapes with FACS-like semantics as follows: lip-sync is created
by retrieving phonemes in a temporal convolutional network, eye
behavior is based on dynamic saliency-based gaze targeting with
blinks about every six seconds or more often during speech and
gaze, and ambient micro-expressions are linked to lip sync and eye

gaze events. It has also widespread use in commercial applications,
e.g. in PokerStars VR, Epic Roller Coasters, or Tribe XR. Other, more
data-driven approaches created realistic facial animation from au-
dio, but are not readily integrated to game engines common in XR
research [7, 28, 38].

Tracking facial expressions in XR setups is challenging since
head-mounted displays obstruct large face areas. Before headsets
with built-in facial expression tracking became available, previous
works have deployed custom-built hardware or composed existing
sensors, commonly fusing lower face tracking sensors with eye-
tracking headsets [17, 25, 29, 39].

Apart from different expressions outputs, facial animation meth-
ods can differ in processing duration, introducing audiovisual mis-
alignment. Since light travels faster than sound we are not used
to quicker audio and are sensitive to even small synchronization
errors: perceptual thresholds have been reported from around 80ms
[37] to around 180ms [41]. Hence, we can synchronize animations
to recorded audio to isolate the effect of expression output irrespec-
tive of processing duration.

We decided to compare facial expressions synthesized with the
Oculus Avatar SDK to facial expressions tracked with ARKit. Both
use FACS-like action unit semantics and provide plugins to forward
expression data to game engines.

3 METHOD
Our study followed a 2x3 design with between-groups factor latency
adjustment (animations in sync with audio vs. delayed by latency
inherent to the animation system) and within-groups factor facial
animation method (face tracking vs. expression synthesis vs. static
face). Written approval for the study was obtained from the ethics
committee of the Institute for Human-Computer Media (MCM) of
the Julius-Maximilians-Universität Würzburg1.

We hypothesize two effects:
1. Main effect of facial animation method: static faces are per-

ceived as less natural and less plausible than animated (synthesized
and tracked) faces.

2. Interaction effect of latency adjustment x facial animationmethod:
In original latency, the quicker method is perceived as more natural
and plausible than the slower method. When latency is adjusted for,
both synthesized and tracked facial expressions are rated equally
natural and plausible.

3.1 Character Creation
We based our virtual human on a full-body scan using the approach
from Achenbach and colleagues [1]: In a custom-built rig of 94
DSLR cameras, multi-view images of our scanning subject were
captured to generate a dense point cloud. A template model’s pose
and shape parameters were then optimized to fit this point cloud.

In a second step, we personalized blendshapes with the auto-
mated pipeline of Menzel and colleagues [21].

Finally, minor scanning artifacts in texture and mesh were cor-
rected manually, resulting in a skinned mesh resembling our actor
with high visual detail and ready for real-time animation.

1https://www.mcm.uni-wuerzburg.de/forschung/ethikkommission/
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3.2 Performance Capture

Figure 2: Performance capture setup. Actor facing a man-
nequin as target while equipped with head tracker, micro-
phone, and hand controllers, with face tracker on table.

To initiate unscripted natural behavior, we examined a set of
questions intended to be used in a classroom for English lessons
2, similar to Lee and colleagues’ conversation prompts [16]. We
then picked questions we thought to inspire spontaneous, casual
answers about non-intimate topics that neither require too much
background knowledge nor reveal personal information, such as
"What makes someone a good driver?" or "Are holidays really re-
laxing? What stressful things are involved in taking a holiday?".

We instructed a trained actor to freely respond to our selected
questions as if asked by a recentlymet acquaintance. Their imagined
conversation partner was embodied as a mannequin sat opposite of
him at a table (cf. Figure 2). We set a target of about 30 seconds per
response, because longer observation times of expressive behavior
have not shown to predict interpersonal outcomes better [2].

To record the performer’s behavior we equipped him with Valve
Index Knuckles tracking hand motions and a HTC Vive tracker to
record head movements. We recorded a video and facial expressions
with an iPhone 12 Pro that ran a custom-built app. It used official
Apple SDKs to record the phone’s screen with camera feed and
microphone input and the detected facial expressions as 52 FACS-
like coefficients together with 3D poses for head, both eyes, and
the point currently looked at.

For our virtual reconstruction of the scene, we let the actor raise
his arms to a T-pose and probed several landmark positions in the
room with an additional HTC Vive Controller: the corners of the
table, iPhone camera, the mannequin’s chin, forehead, and eyes,
and the actor’s tip of the nose, nasion, corners of the mouth, and
wrists.

3.3 Animation
3.3.1 Coordinate System Alignment. To find the offset between
head tracker origin and the skinned mesh’s skull joint, we regis-
tered virtual face mesh landmarks with corresponding face land-
marks probed in the performance capture setup. This was further
refined by manually matching the tracker placement on the virtual
2http://teflpedia.com/Teflpedia:Conversation_questions

character in a juxtaposition of face sensor screen capture and the
virtual character rendered in a matching perspective.

To match coordinate frames from ARKit and SteamVR, we firstly
registered matching vertices from ARKit’s face mask with vertices
from the full-body mesh with corresponding blendshape weights
applied. Secondly, we applied the previous offset from head tracker
to virtual skull joint. Finally, we further adjusted the offset so that
the gaze rays hit the iPhone camera at the time of recording when
the actor truly looked at it.

Similarly, we offset head poses forwarded to the Oculus Avatar
SDK to have the SDK template avatar match the actor avatar’s eye
level and direction.

3.3.2 Body pose. To infer the actor’s body pose, we used the VRIK
solver from RootMotion’s Final IK package3: hand and head end
effector targets followed respective tracker trajectories with a fixed
pelvis target at the seat and elbow bend goals at the armrests.
We retrieved offsets between trackers and end effectors from the
recorded T-pose.

Figure 3: Facial Animation Pipeline. Performance (left) is
turned into corresponding animation parameters (right)
from either audio and tagged gaze targets (Meta Oculus
Avatar SDK, top center), or RGBD tracking (Apple ARKit,
bottom center). Resulting avatar renders shown in Figure 1.

3.3.3 Facial Expression. Data for both tracked and synthesized
facial animation was brought into a shared animation parameter
space to drive the virtual actor mesh (cf. Figure 3). We transferred
ARKit expressions directly since the mesh had exactly matching
blendshapes. Mapping expressions from the Oculus Avatar SDK
directly to their semantically matching ARKit blendshapes resulted
in different expressiveness. Therefore, for each Oculus Avatar SDK
expression, we computed its closest resemblance built from a com-
bination of ARKit blendshapes and baked it as new target shape.

To transfer gaze direction, we rotated the actor avatar’s eyes so
that their visual axes point towards the look-at point. For tracked
expressions we used the reported look-at point, for synthesized
expressions we derived the look-at point as the middle of where
the Oculus Avatar SDK’s avatar gaze rays are closest.

3https://assetstore.unity.com/packages/tools/animation/final-ik-14290
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3.3.4 Latency Adjustment. For synthesized expressions we pre-
calculated phoneme weights for the audio track to synchronize
them. The Oculus Avatar SDK used them with an offset of 40ms.
To get them in their original latency, we live-fed the actor audio
into the SDK.

To synchronize tracked expressions with the audio track, we
offset the animation track by our measured motion-to-photon la-
tency. We recorded a person repeatedly opening their mouth with
a bilabial plosive and manually counted the number of frames until
their mirrored ARKit mesh opened its mouth. This yielded an offset
of 152.5ms. For original latency, we used the tracked expressions
without delay.

The body pose was synchronized to audio by slowly swinging
a controller in the face tracker’s camera frustum and delaying the
audio track so that movement peaks co-occur. Stauffert and col-
leagues report a motion-to-photon latency for a HTC Vive tracker
[36] of 56.14ms, which we used as delay for body pose tracking
data.

3.4 Immersive Observation
Observation in VR occurred seated from the perspective of the
mannequin facing the actor during performance capture. Since we
focus on effects of facial animation, we occluded the character’s
lower body and forearms by placing a table between observer and
actor in the otherwise empty virtual environment.We used a Reverb
G2 Omnicept as headset (resolution of 2160x2160 pixels per eye at
90Hz refresh rate).

3.5 Procedure
Our study procedure, depicted in Figure 4, took about 60 minutes.
We welcomed participants and let them read the study briefing. Af-
ter we answered questions about the procedure, participants gave
informed written consent to their participation and use of their
data. Then they filled out digital questionnaires about previous
XR and gaming experience, demographics, and symptoms related
to simulator-sickness using the Simulator Sickness Questionnaire
(SSQ) [12] on a dedicated workstation. The experimenter performed
quasi-random group assignment using covariate-adaptive random-
ization [11]. Accordingly, participants were evenly assigned to the
latency adjustment conditions (all animations either in sync with
audio or delayed by the animation system’s latency) across biologi-
cal sex and previous XR and gaming experience. Each participant
then observed and rated the virtual character in four different per-
formance blocks.

In each block, the performance was shown in its three facial
animation variations, first rated with a static face, then with syn-
thesized and tracked facial expression in randomized order. Thus,
every participant rated twelve observations. To conclude, partici-
pants reported SSQ scores, familiarity with the shown actor before
the experiment, and gave optional study feedback in an open text
field.

Before the first trial, the experimenter instructed them on how
to don the VR headset including adjusting lens spacing, strap fit,
and a sound test. When ready, participants were instructed to sit
relaxed and the virtual camera was calibrated. Once calibrated, the
previously set up black screen overlay was removed to reveal the

virtual scene. In it, a text panel informed participants about the
virtual character about to be shown and instructed them to observe
him attentively. Then, the panel showed the prompt he would
respond to. Performances ended by hiding the virtual character
and displaying a prompt to remove the headset to continue with
the questionnaire on the computer. Here, we investigated behavior
naturalness by asking for agreement to three statements on a Likert-
scale (7 points from "completely disagree" to "completely agree"):
1. The verbal behavior of the virtual character seemed natural, 2.
The nonverbal behavior of the virtual character seemed natural,
3. The verbal and nonverbal behavior of the virtual character fit
together. To assess appearance and behavior plausibility, we asked
for agreements to six statements from the same-named dimension
of the Virtual Human Plausibility Questionnaire (VHPQ [18]) on
a Likert-scale (7 points from "completely disagree" to "completely
agree"): 1. The behavior of the virtual character seemed plausible,
2. The appearance of the virtual character seemed plausible, 3.
The virtual character’s behavior matched its appearance, 4. The
behavior and appearance of the virtual character were coherent,
5. The virtual character behaved as I would expect it to behave,
6. I could predict how the virtual character would behave by its
appearance.

3.6 Participants
We recruited 48 participants via our university’s participation man-
agement system. They were free to pick a time slot provided on
weekdays during normal working hours and compensated with €10.
We excluded four from analysis - two due to technical issues with
the setup, one because of language comprehension issues, and one
because they reported to be familiar with the actor.

The 44 participants we included for analysis (29 of them female)
had a mean age of 26.1 years (SD=6.1) and mostly had a higher
education entrance qualification (23) or completed studies (19).

4 RESULTS
We used R v4.2.2[27] for analysis, aggregated Likert-scale ratings
as interval-level data [23], and evaluated effects with linear mixed
modeling using nlme[26]. We used random intercepts for all vari-
ables and modeled factors and interactions as fixed effects, as pro-
posed by Field et al. [8]. All effects are reported as significant at
p<.05 using log-likelihood ratio. Descriptive values are shown in
Table 1. To test our hypotheses, we used two planned orthogonal
contrasts throughout our analysis: firstly comparing observation of
static faces to observation of either animated faces (tracked or syn-
thesized), secondly comparing synthesized to tracked expressions.
Since post-exposure SSQ scores were lower than pre-exposure in
both conditions, we did not analyze simulator sickness further.

4.1 Behavior Naturalness
Rating of nonverbal behavior naturalness was significantly affected
by facial animation method (𝜒2 (2)=93.24, p<.001), but not by la-
tency adjustment (𝜒2 (1)=.25, p=.62). There was no significant in-
teraction between latency adjustment and facial animation method
(𝜒2 (2)=.50, p=.78). Contrasting ratings of static faces with ratings
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Figure 4: Experiment Procedure

of synthesized and tracked expressions revealed a significant dif-
ference (b=.68, t(86)=11.8, p=<.001). Likewise, contrasting synthe-
sized with tracked animations proved significant (b=-.5, t(86)=-5,
p=<.001).

Verbal behavior naturalness rating was also significantly affected
by facial animation method (𝜒2 (2)=68.36, p<.001), but not by the
method’s latency (𝜒2 (1)=.37, p=.54). There was no significant in-
teraction between latency adjustment and facial animation method
(𝜒2 (2)=2.62, p=.27). Contrasting the static face with the two dy-
namic methods (synthesized and tracked) revealed a significant
difference (b=.65, t(86)=9.74, p=.006). Likewise, the contrast com-
paring synthesized to tracked animations proved significant (b=-.5,
t(86)=-5, p=<.001).

Match between verbal and nonverbal behavior was significantly
affected by facial animation method (𝜒2 (2)=167.53, p<.001), but
not by latency adjustment (𝜒2 (1)=1.19, p=.28). Ratings show no
significant interaction between latency adjustment and facial ani-
mationmethod (𝜒2 (2)=2.24, p=.33). Contrasting animated with non-
animated faces revealed significant differences (b=1.01, t(86)=18.9,
p<.001), as did contrasting both animated face versions (b=-.56),
t(86)=-6.08, p<.001).

4.2 Appearance and Behavior Plausibility
Rating of appearance and behavior plausibility was significantly
affected by the facial animation method (𝜒2 (2)=104.69, p<.001),
but not by the method’s latency (𝜒2 (1)=.53, p=.47). There was
no significant interaction between latency adjustment and facial
animation method (𝜒2 (2)=.34, p=.84).

Contrasting ratings of static faces with the two dynamic meth-
ods (synthesized and tracked) revealed a significant difference
(b=.55, t(86)=13.0, p=<.001). Likewise, the contrast comparing syn-
thesized to tracked animations proved significant (b=-.36, t(86)=-
5.45, p=<.001).

4.3 Qualitative Feedback
Several participants mentioned they felt directly addressed by the
avatar. A few participants speculated about what changed between
observations within a performance block. Some guessed that faces
continuously moved more realistically from trial to trial within
a block, although we randomized the condition order. Multiple
participants mentioned they had difficulty in differentiating the
two animated conditions.

5 DISCUSSION
Static faces were, on average, rated as less natural and less plausible
than animated faces. Notably, this effect was also shown for verbal
naturalness. While we had formulated our hypothesis H1 towards
the overall difference in naturalness, we highlight this difference
because verbal behavior was never manipulated and always equal
per performance block.

Against our hypothesis H2, the performance ratings did not re-
veal an interaction effect between facial animation method and its
synchronization to speaker audio. This might be due the relatively
small audiovisual skew we used between groups. Also, rating dif-
ferences in verbal behavior naturalness hint at participants not nec-
essarily focusing on the two channels (verbal/ nonverbal) distinctly,
while not paying close attention to their temporal alignment.

While our planned contrasts did show significant differences, we
expected the comparison between the two animated performances
two show inverted differences: All plausibility and naturalness rat-
ings were, on average, higher for synthesized expressions than for
tracked ones. In other words, participants found non-personalized,
"generic" expressions fit the actor’s avatar better than ones from
the actor himself. This might stem from artifacts in the tracked
facial expressions or the synthesized expressions including more
prosocial cues.

As a first suspicion, we retroactively re-watched the tracked
performances with a focus on tracking artifacts. While common
in live tracking data, e.g. in the form of jittery lips, sudden jumps
after tracking loss, and eyes and/or mouth not closing completely,
these issues usually do not occur in facial expression synthesis.
Synthesized expressions are smoother by design. However, we did
not find such artifacts in the captured facial performance.

In a further exploratory analysis we compared the two animated
face variations. In social settings, gaze behavior includes directing
gaze at another one’s face (face-gaze) or eyes (eye-gaze), simulta-
neously looking at each other’s face (mutual gaze) or eyes (eye
contact), and intentionally not looking at another person (gaze
avoidance). Since we did not record observer eye gaze, we looked
at how often the virtual human’s eyes were directed toward the ob-
server.We calculated how long in total the virtual human’s gaze rays
hit the mannequin’s head. More specifically, we checked whether
a sphere moving from eye origin along the gaze direction hit a
capsule collider placed to fit the mannequin head. The tracked ex-
pressions included more gaze towards the mannequin, but with
shorter dwell times.
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Latency Face Appearance + Behavior Plausibility Behavior Naturalness

Verbal Nonverbal Match

Original Static 3.56 (1.26) 4.39 (2.36) 3.26 (1.91) 2.28 (1.45)
Synthesized 5.67 (0.98) 6.36 (0.85) 5.85 (1.20) 6.14 (0.90)
Tracked 4.83 (1.28) 5.68 (1.50) 4.72 (1.55) 4.89 (1.60)

Adjusted Static 3.80 (1.38) 3.76 (2.38) 3.36 (0.50) 2.77 (1.51)
Synthesized 5.75 (1.00) 6.35 (0.83) 5.88 (1.21) 6.08 (1.20)
Tracked 5.02 (1.20) 5.73 (1.28) 5.01 (1.47) 5.09 (1.51)

Table 1: Descriptive statistics.Means of independent variables with standard deviations in brackets.

We suggest this rating difference in favor of synthesized expres-
sions should be utilized for conversational agents or playing back
monologues. Therefore, more natural and more plausible anima-
tions might be achieved without the need for facial expression
tracking. For truly interactive settings with dynamic turn-taking
our findings might not generalize. Since facial expression tracking
also contains personal facial expression dynamics and veridical
gaze points, showing synthesized expressions instead might con-
tribute to misunderstandings. Still, achieving natural and plausible
facial animations with tracking input from consumer devices is a
valuable insight for XR researchers and developers.

6 LIMITATIONS AND FUTUREWORK
We presented one character across throughout all observations.
This might have rendered the experimental setting less realistic,
since people usually do not repeat themselves word by word. We
opted for this approach because it allowed direct comparisons be-
tween the conditions, but suggest to also compare characters that
differ in factors like gender, ethnicity, and voice. Similarly, we sug-
gest exploring effects of facial animation depending on character
familiarity.

Also, our approach could be extended to truly interactive setups.
However, latency might show difficult as independent variable be-
cause audio and nonverbal behavior can then only be synchronized
by delaying audio signals by the facial animation’s processing dura-
tion. This amplifies the difference between conversation partners’
"non-mutual realities" [32] and results in misunderstandings, e.g.
in the form of overlapping talk [33].

Furthermore, future work should also address effects of nonver-
bal behavior on the perception of verbal behavior in more detail.

7 CONCLUSION
We explored how two facial animation methods (tracking or syn-
thesis of facial expression) compared to each other and a baseline of
a static face when used on a personalized, photorealistic virtual hu-
man. In a mixed-design observation study, 44 participants observed
four performances, each in its three facial animation variations,
and subsequently rated their appearance and behavior plausibility,
and behavior naturalness. The between-groups factor of latency
adjustment (animation in-sync with audio or delayed by recording
latency) showed not to influence ratings significantly. However,
the within-factor facial animation method showed to significantly
affect ratings: Overall, performances were rated more plausible

and more natural when shown with animated faces (synthesized/
tracked expressions), even more so for synthesized ones than for
tracked ones. This implies that natural, plausible facial animations
for avatars do not require facial expression tracking when showing
another avatar’s monologue. We suggest further work to address
these implications for character variations and truly interactive
settings.
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