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Figure 1: a) SoftDECA (brown) compared to linear blendshapes (gray): More realistic non-linear facial animations (left),
biomechanical restrictions like Bell’s Palsy (middle), and interactive manipulations like an increase in weight (right) are only a
few examples that can be efficiently animated. b) The layered head model that encapsulates the skin, the muscles, and the skull
with wraps that builds the foundtion of SoftDECA and for which we present a data-driven fitting algorithm.

ABSTRACT
Facial animation on computationally weak systems is still mostly
dependent on linear blendshape models. However, these models
suffer from typical artifacts such as loss of volume, self-collisions,
or erroneous soft tissue elasticity. In addition, while extensive effort
is required to personalize blendshapes, there are limited options to
simulate or manipulate physical and anatomical properties once a
model has been crafted. Finally, second-order dynamics can only
be represented to a limited extent.

For decades, physics-based facial animation has been investi-
gated as an alternative to linear blendshapes but is still cumber-
some to deploy and results in high computational cost at runtime.
We propose SoftDECA, an approach that provides the benefits of
physics-based simulation while being as effortless and fast to use
as linear blendshapes. SoftDECA is a novel hypernetwork that
efficiently approximates a FEM-based facial simulation while gen-
eralizing over the comprehensive DECA model of human identities,
facial expressions, and a wide range of material properties that
can be locally adjusted without re-training. Along with SoftDECA,
we introduce a pipeline for creating the needed high-resolution
training data. Part of this pipeline is a novel layered head model
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that densely positions the biomechanical anatomy within a skin
surface while avoiding self-intersections.

CCS CONCEPTS
• Computing methodologies→ Physical simulation; Neural
networks.

KEYWORDS
Facial Animation, Physics-Based Simulation, Deep Learning

ACM Reference Format:
Nicolas Wagner, Ulrich Schwanecke, and Mario Botsch. 2023. SoftDECA:
Computationally Efficient Physics-Based Facial Animations. In ACM SIG-
GRAPH Conference on Motion, Interaction and Games (MIG ’23), November
15–17, 2023, Rennes, France. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3623264.3624439

1 INTRODUCTION
At present, research in the field of head avatars and facial animation
is mainly concerned with obtaining photorealistic results through
neural networks [Athar et al. 2022; Cao et al. 2022; Grassal et al.
2022; Zielonka et al. 2023] which can be operated on computation-
ally rich systems. What currently falls short, however, is the inclu-
sion of less capable hardware setups and circumstances in which
geometry-based processing must be applicable. For this, various
adaptations of linear blendshape models [Lewis et al. 2014] are still
the usual means in production. Although linear facial models have
been intensively researched and improved over the past decades,
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there are still known shortcomings like physically implausible dis-
tortions, loss of volume, anatomically impossible expressions, miss-
ing volumetric elasticity, or self-intersections. Physics-based simu-
lations have been proposed that overcome most artifacts of linear
blendshapes and allow for manifold additional functionalities [Bar-
rielle et al. 2016; Choi et al. 2022; Cong 2016; Ichim et al. 2017, 2016;
Srinivasan et al. 2021; Yang et al. 2022]. Among them are medical
applications such as visualization of weight changes, paralysis, or
surgeries but also visual effects like aging, zombifications, gravity
changes, and second-order effects. Moreover, it has recently been
shown [Yang et al. 2022] that simulations with detailed extracted
material information lead to much more realistic facial animations
than linear models. The downside of physics-based facial animation
models, however, is that these characteristically cause considerable
computational overhead, giving rise to a body of literature on ac-
celeration techniques. At this, the focus has been mostly on the
evaluation of simulations in either manually constructed [Brandt
et al. 2018] or learned subspaces [Holden et al. 2019; Santesteban
et al. 2020] as well as on corrective blendshapes [Ichim et al. 2016].
The learned subspace methods [Holden et al. 2019] have proven
to be more general and flexible, which is why in SoftSMPL [San-
testeban et al. 2020] they have already been successfully applied to
full-body animations. Nonetheless, so far there is still no method
that transfers these advancements in fast physics-based simula-
tions to facial animations. The principal contribution of this work
is closing this gap with a deep learning approach which we call
SoftDECA.

SoftDECA is a novel neural network architecture that efficiently
animates faces while closely following a dynamic physics-based
model. Although our method is universal in the sense that arbi-
trary physics-based facial animations can be considered, we focus
on approximating a combination of state-of-the-art anatomically
plausible and volumetric finite element methods (FEM) [Cong and
Fedkiw 2019; Cong 2016; Ichim et al. 2017, 2016]. For this, we pro-
pose a novel adaption of hypernetworks [Ha et al. 2016] which
yields inference times of about 10ms on consumer-grade CPUs and
has the same programming interface as standard linear blendshapes.
More precisely, we train SoftDECA to be applied as an add-on to
arbitrary human blendshape rigs that follow the ARKit system1.

At the same time, SoftDECA is easily deployable without the
need for elaborated personalizations or retraining, as we collect
an extensive corpus of training examples. These examples cover
a reasonable domain of the targeted FEM and bring together mul-
tiple data sources such as CT head scans to reflect the anatomy
of heads, 3D head reconstructions in the wild that capture diverse
head shapes (DECA [Feng et al. 2021]), and facial expressions in
the form of recorded ARKit blendshape weights from dyadic con-
versational situations. The resulting overall training set facilitates a
strong generalization of SoftDECA across human identities, facial
expressions, and broad areas of the parameter manifold of the tar-
geted FEMmodel. In contrast to earlier methods [Holden et al. 2019;
Santesteban et al. 2020], the ability to generalize across FEM param-
eters makes extensive and efficient artistic interventions possible,
with SoftDECA even supporting localized material adjustments.

1https://developer.apple.com/

As an additional contribution, we present a novel layered head
model (LHM) that represents all training instances in a standardized
way. Unlike fully or partially tetrahedralized volumetric meshes
conventionally used for FEM, the LHM has additional enveloping
wraps around bones, muscles, and skin. Based on these wraps,
we describe a data-driven fitting procedure that positions muscles
and bones within a neutral head while avoiding intersections of
the various anatomic structures. A characteristic that was mostly
not of concern in previous manually crafted physics-based facial
animations but can otherwise lead to numerical instabilities in our
automated training data generation approach.

2 RELATEDWORK
2.1 Personalized Anatomical Models
Algorithms that create personalized anatomical models can essen-
tially be distinguished according to two paradigms: heuristic-based
and data-driven. Considering heuristic-based approaches, Anatomy
Transfer [Ali-Hamadi et al. 2013] applies a space warp to a template
anatomical structure to fit a target skin surface. The skull and other
bones are only deformed by an affine transformation. A similar
idea is proposed by Gilles et al. [2010]. While they also implement
a statistical validation of bone shapes, the statistics are collected
from artificially deformed bones. In [Ichim et al. 2016; Kadleček
et al. 2016], an inverse physics simulation was used to reconstruct
anatomical structures from multiple 3D expression scans. Saito et
al. [2015] simulate the growth of soft tissue, muscles, and bones.
A musculoskeletal biomechanical model is fitted from sparse mea-
surements in [Schleicher et al. 2021] but not qualitatively evaluated.

There are only a few data-driven approaches because combined
data sets of surface scans and CT, or CT and DXA images are hard
to obtain for various reasons (e.g. data privacy or unnecessary
radiation exposure). The recent work OSSO [Keller et al. 2022]
predicts full body skeletons from 2000 DXA images that do not
carry precise 3D information. Further, bones are positioned within
a body by predicting only three anchor points per bone group
and not avoiding intersections between skin and skull. A model
that prevents skin-skull intersections and also considers muscles
is based on fitting encapsulating wraps instead of the anatomy
itself [Komaritzan et al. 2021]. However, no accurate algorithm
based on medical imaging but a BMI (body mass index) regressor
[Maalin et al. 2021] is used to position the wraps. A much more
accurate, pure facemodel, was developed by Achenbach et al. [2018].
Here, CT scans are combined with optical scans by a multilinear
model (MLM) which can map from skulls to faces and vice versa. As
before, no self-intersections are prevented and only bones are fitted.
Building on the data from [Achenbach et al. 2018] and following
the idea of a layered body model [Komaritzan et al. 2021], we create
a statistical layered head model including musculature that avoids
self-intersections.

2.2 Physics-Based Facial Animation
A variety of techniques for animating faces have been developed in
the past [Bradley et al. 2010; Ichim et al. 2015; Parke 1991; Zhang
et al. 2008]. Data-driven models [Ichim et al. 2016; Lewis et al. 2014,
2005], which have recently been significantly improved by deep
learning [Athar et al. 2022; Cao et al. 2022; Feng et al. 2021; Garbin
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et al. 2022; Song et al. 2020; Zheng et al. 2022], are certainly domi-
nant. Due to their simplicity and speed, linear blendshapes [Lewis
et al. 2014] are still most commonly used in demanding applica-
tions and whenever no computationally rich hardware is available.
Physics-based models have been developed for a long time [Sifakis
et al. 2005] and avoid artifacts like implausible contortions and self-
intersections, but due to their complexity and computational effort,
they are rarely used. The pioneering work of Sifakis et al. [2005]
is the first fully physics-based facial animation. The simulation is
conducted on a personalized tetrahedron mesh, which can only
be of a limited resolution due to a necessary dense optimization
problem.With Phace [Ichim et al. 2017], this problemwas overcome
by an improved physics simulation. An art-directed muscle model
[Bao et al. 2019; Cong and Fedkiw 2019; Cong 2016] additionally
represents muscles as B-splines and allows control of expressions
via trajectories of spline control points. A solely inverse model
for determining the physical properties of faces was proposed in
[Kadleček and Kavan 2019].

Hybrid approaches add surface-based physics to linear blend-
shapes for more detailed facial expressions [Barrielle et al. 2016;
Bickel et al. 2008; Choi et al. 2022; Kozlov et al. 2017]. However,
by construction, they can not model volumetric effects. With vol-
umetric blendshapes [Ichim et al. 2016], a hybrid approach has
been presented that combines the structure of linear blendshapes
with volumetric physical and anatomical plausibility but can only
achieve real-time performance through personalized corrective
blendshapes.

Considering soft bodies in general, deep learning approaches
have been investigated to approximate physics-based simulations.
For instance, in [Casas and Otaduy 2018; Santesteban et al. 2020] the
SMPL (SkinnedMulti-Person LinearModel) proposed in [Loper et al.
2015] was extended with secondary motion. Recently, [Choi et al.
2022; Srinivasan et al. 2021; Yang et al. 2022] developed methods
to learn the particular physical properties of objects and faces.
However, these approaches must be retrained for unseen identities
and are slow in inference. A fast and general approach for learning
physics-based simulations is introduced in [Holden et al. 2019].
Unfortunately, they focused on reflecting the dynamics of single
objects with limited complexity. We present a real-time capable
deep learning approach to physics-based facial animations that
does not need to be retrained and maintains the control structure of
standard linear blendshapes. Additionally, none of the previously
described deep learning methods tackle the challenging creation of
facial training data, which we also address in this work.

3 METHOD
The foundation of the SoftDECA animation system is a novel lay-
ered head representation (Section 3.1). Starting from there, we
design a FEM-based facial animation system (Sections 3.2 & 3.3)
and demonstrate how to distill it into a defining dataset (Section
3.4). With this dataset, we train a newly designed hypernetwork
(Section 3.5) as a real-time capable approximation of the animation
system.

𝑆T , 𝑆T 𝑀T , 𝑀̂T 𝐵T , 𝐵̂T

Figure 2: All components of the layered headmodel template
T . Skin 𝑆T , skin wrap 𝑆T , muscles 𝑀T , muscles wrap 𝑀̂T ,
skull 𝐵T , and the skull wrap 𝐵̂T .

3.1 Layered Head Model
3.1.1 Structure. We represent a headH = 𝜌H (T ) with neutral ex-
pression through a component-wise transformation 𝜌H of a layered
head model template

T =

(
𝑆T , 𝐵T , 𝑀T , 𝑆T , 𝐵̂T , 𝑀̂T

)
, (1)

that consists of six triangle meshes. 𝑆T describes the skin surface
including the eyes, the mouth cavity, and the tongue, 𝐵T the surface
of all skull bones and teeth,𝑀T the surface of all muscles and the
cartilages of the ears and nose. 𝑆T is the skin wrap, i.e. a closed
wrap enveloping 𝑆T , 𝐵̂T the skull wrap that envelopes 𝐵T , and 𝑀̂T
the muscle wrap that envelopes𝑀T . Other anatomical structures
are omitted for simplicity. The template structures 𝑆T , 𝐵T , and𝑀T
were designed by an experienced digital artist. The skin, skull, and
muscle wraps 𝑆T , 𝐵̂T , and 𝑀̂T have the same triangulation and
were generated by shrink-wrapping a sphere as close as possible
to the corresponding surfaces without intersections. The complete
template is shown in Figure 2.

Due to the shared triangulation, the wraps of the LHM also
define a soft tissue tet mesh ST (i.e. between the skin and the
muscle wraps) and a muscle tissue tet meshMT (i.e. between the
muscle and the skull wraps). For this, each triangle prism that can be
spanned between corresponding wrap faces is canonically split into
three tets. The complexities of all template components are given
in the supp. material. In the following, we will state the number of
vertices of a mesh as | · |𝑣 and the number of faces as | · |𝑓 .

3.1.2 Fitting. Later on, creating training data requires finding(
𝑆, 𝐵, 𝑀, 𝑆, 𝐵̂, 𝑀̂

)
= 𝜌H (T ) (2)

when only the skin surface 𝑆 of the head H is known. To this
end, we rely on a hybrid approach that positions the skull in a
data-driven manner while the remaining template components are
fitted by heuristics that ensure anatomic plausibility and avoid
self-intersections.

As the first of the remaining template meshes, we fit the skin
wrap by setting

𝑆 = rbf𝑆T→𝑆 (𝑆T ). (3)
The RBF function is a space warp based on triharmonic radial basis
functions [Botsch and Kobbelt 2005] that is calculated from the
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Figure 3: a) The training scheme of the skin to skull wrap distances regressor 𝐷 . b) Procedural overview of the layered head
model fitting algorithm. Orange frames indicate input, blue frames output. The enumeration reflects the fitting order. Step 6 is
shown only for the sake of completeness.

template skin surface 𝑆T to the target 𝑆 and subsequently applied
to the template skin wrap 𝑆T . By the construction of RBFs, the skin
wrap will be warped semantically consistent and stick close to the
targeted skin surface.

Next, we fit the skull wrap 𝐵̂ by invoking a linear regressor 𝐷
that predicts the distances from the vertices of 𝑆 to the correspond-
ing vertices of 𝐵̂ and subsequently minimizing with projective
dynamics [Bouaziz et al. 2014]

argmin
𝑋

𝑤rect𝐸rect
(
𝑋, 𝑆T

)
+𝑤dist2𝐸dist2

(
𝑋, 𝑆, 𝐷

(
𝑆

))
+𝑤curv𝐸curv

(
𝑋, 𝐵̂T

)
.

(4)

Here, 𝐸dist2 ensures that the predicted distances are adhered to,
𝐸curv is a curvature regularization of the skull wrap, and 𝐸rect avoids
shearing between corresponding skin and skull wrap faces. The
distances are set to a minimum value if they fall below a threshold,
thus, avoiding skin-skull intersections. To ease the flow of reading,
we give formal descriptions of the energy components in the supp.
material. The optimization is initialized with 𝑋 = 𝑆 − 𝐷 (𝑆) · 𝑛(𝑆)
where 𝑛(𝑆) are area-weighted vertex normals. 𝐷 is trained on the
dataset of [Gietzen et al. 2019] (SKULLS) that relates CT skull mea-
surements to optical skin surface scans. In Figure 3 a) the linear
regressor training is depicted.

The muscle wrap 𝑀̂ is fitted by positioning its vertices at the
same absolute distances between the corresponding skin and skull
wrap vertices as in the template, and only passing on ten percent
of the relative distance changes compared to the template. This
approach assumes that the muscle mass in the facial area is only
moderately affected by body weight and skull size.

The skull mesh is placed by setting

𝐵 = rbf
𝐵̂T→𝐵̂

(𝐵T ) . (5)

The properties of the RBF space warp ensure that the skull mesh
remains within the skull wrap if the wrap is of sufficient resolution.

The muscle mesh could be placed in a similar fashion but is not
needed in our pipeline any further.

Finally, the soft and muscle tissue tet meshes S and M can be
constructed as described before. On average, the complete fitting
pipeline takes about 500ms on an AMD Threadripper Pro 3995wx
processor. Figure 3b) visualizes the overall fitting process.

3.2 SoftDECA Animation System
Building on the LHM representation, we now introduce the Soft-
DECA animation system. For this, the classical concept of linear
blendshapes is reviewed first. Thereupon, the dynamic physics-
based facial simulation system which is at the core of SoftDECA is
derived.

For a specific head, a linear blendshape model consists of 𝑛
surface blendshapes {

𝑆𝑖
}𝑛
𝑖=1 (6)

which animate an unknown facial expression 𝑆𝑡 as a linear combi-
nation

𝑆𝑡 =
∑︁𝑁

𝑖=1
w𝑖
𝑡𝑆

𝑖 , (7)

where the blending weights w𝑡 determine the share of each blend-
shape in the expression at frame 𝑡 .

To achieve the same animation with a physical model 𝜙 , one typ-
ically differentiates between forward and inverse methods. Without
loss of the generality, we consider the inverse method in the follow-
ing. Here, the expression 𝑆𝑡 is converted into the (in the Euclidean
sense) closest 𝜙−plausible solution by 𝜙† to

𝑇𝑡 = 𝜙† (𝑆𝑡 , p) , (8)

where p is a vector of material and simulation parameters on which
𝜙 depends. For including second-order effects as well, Equation (8)
expands to

𝑇𝑡 = 𝜙† (𝛾 𝑆𝑡 + 2𝛼 𝑇𝑡−1 − 𝛽 𝑇𝑡−2, p) . (9)
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The SoftDECA animation system operates in the same manner, but
the right-hand side is approximated by a computationally efficient
neural network f.

Next, we will describe our realization of 𝜙† and how to create
representative examples. Nonetheless, please note that SoftDECA
is not restricted to a particular realization of 𝜙†.

3.3 Physics-Based Simulations
We implement anatomically plausible inverse physics 𝜙† as a pro-
jective dynamics energy 𝐸𝜙† . At this, state-of-the-art FEM models
[Cong 2016; Ichim et al. 2017; Kadleček and Kavan 2019] are merged
by applying separate terms for soft tissue, muscle tissue, the skin,
the skull, and auxiliary components.

3.3.1 Energy. Considering the soft tissue S, we closely follow the
model of [Ichim et al. 2017] and impose

𝐸S = 𝑤vol
∑︁
t∈S

𝐸vol (t) +𝑤str
∑︁
t∈S

1𝜎𝐹 (t)>𝜖𝐸str (t), (10)

which for each tet t penalizes change of volume and strain, respec-
tively. Strain is only accounted for if the largest eigenvalue 𝜎𝐹 (t) of
the stretching component of the deformation gradient 𝐹 (t) ∈ R3×3
grows beyond 𝜖 .

To reflect the biological structure of the skin, we additionally
formulate a dedicated strain energy

𝐸𝑆 =
∑︁
t∈𝑆

𝐸str (t) (11)

on each triangle t of the skin which, to the best of our knowledge,
has not been done before.

For the muscle tets M, we follow Kadleček et al. [2019] that
capturing fiber directions for tetrahedralized muscles is in general
too restrictive. Hence, only a volume-preservation term

𝐸M = 𝑤vol
∑︁
t∈M

𝐸vol (t) (12)

is applied for each tet inM.
The skull is not tetrahedralized as it is assumed to be non-de-

formable even though it is rigidly movable. The non-deformability
of the skull is represented by

𝐸𝐵 =
∑︁
t∈𝐵

𝐸str (t) +
∑︁
x∈𝐵

𝐸curv (x, 𝐵) , (13)

i.e. a strain 𝐸𝑠𝑡𝑟 on the triangles 𝑡 and mean curvature regulariza-
tion on the vertices 𝑥 of the skull 𝐵. We do not model the non-
deformability as a rigidity constraint due to the significantly higher
computational burden.

To connect the muscle tets as well as the eyes to the skull, con-
necting tets are introduced similar to the sliding constraints in
[Ichim et al. 2017]. For the muscle tets, each skull vertex connects
to the closest three vertices inM to form a connecting tet. For the
eyes, connecting tets are formed by connecting each eye vertex to
the three closest vertices in 𝐵 . On these connecting tets, the energy
𝐸𝑐𝑜𝑛 with the same constraints as in Equation (10) is imposed. By
this design, the jaw and the cranium are moved independently from
each other through muscle activations but the eyes remain rigid
and move only with the cranium.

Finally, the energy

𝐸inv =
∑︁
x∈𝑆

𝐸tar (x, 𝑆𝑡 ) (14)

of soft Dirichlet constraints is added, attracting the skin surface 𝑆
vertices to the targeted expression 𝑆𝑡 .

The weighted sum of the aforementioned energies gives the total
energy

𝐸𝜙† = 𝑤S𝐸S +𝑤M𝐸M +𝑤B𝐸𝐵 +𝑤mstr𝐸mstr

+𝑤S𝐸𝑆 +𝑤con𝐸con +𝑤inv𝐸inv
(15)

of the inverse model 𝜙†. Altogether, 𝜙† results in an expression 𝑇𝑡
that in a Euclidean sense is close to the target 𝑆𝑡 but is plausible
w.r.t. the imposed constraints.

3.3.2 Collisions. Finally, self-intersections are resolved between
colliding lips or teeth in a subsequent projective dynamics update
as in [Komaritzan and Botsch 2018].

3.3.3 Parameters. The construction of 𝜙† also implies parts of
the parameter vector p. As such, the dynamics parameters 𝛼, 𝛽,𝛾 ,
weights 𝑤∗ of all the constraints, but also other attributes of the
constraints can be considered. For example, the target volume in
𝐸vol or scaling factors of the skull bones. Additionally, we include
constant external forces like gravity strength and direction into p.
An overview of all parameters we use and the corresponding value
ranges is given in the supp. material.

3.4 Training Data
By the definition of the animation system in Equation (9), a repre-
sentative training dataset D must consist of examples that relate
diverse facial expressions created via linear blendshapes to the cor-
responding surfaces that conform 𝜙 . Further, to capture dynamic
effects, the exemplary facial expressions have to form reasonable
sequences. This dataset must also cover a variety of distinct head
shapes as well as simulation parameters.

In the following, we describe a pipeline for creating instances
of such a dataset, which can be roughly divided into six high-level
steps.

(1) We start by randomly drawing a neutral skin surface 𝑆 from
DECA [Feng et al. 2021], a comprehensive high-resolution
face model. More specifically, we randomly draw an image
from the Flickr-Faces-HQ [Karras et al. 2019] dataset and let
DECA determine the corresponding neutral head shape as
well as a latent representation h.

(2) Next, the template LHM T is aligned with the skin surface
𝑆 as described in Section 3.1.

(3) In the third step, deformation transfer [Botsch et al. 2006] is
used to transfer ARKit surface-based blendshapes to 𝑆 .

(4) Subsequently, we create an expression sequence S = (𝑆𝑡 )𝑚𝑡=0
of length𝑚+1 by applying a sequence of blendshape weights
w = (w𝑡 )𝑚𝑡=0. The blendshape weights are obtained from 8
around 10 minutes long dyadic conversations recorded with
a custom iOS app.

(5) As the final step before the 𝜙-plausible counterpart of S can
be generated, simulation parameters have to be sampled on
a proper domain. For continuous parameters, we expect the



MIG ’23, November 15–17, 2023, Rennes, France Nicolas Wagner, Ulrich Schwanecke, and Mario Botsch

DeformationHyper-Matrix Dynamic
Parameters

    

Gradients Deformation Transfer

Dyn.

Figure 4: An overview of the SoftDECA facial animation. In Step 1), the hyper-tensor and the dynamic parameters are determined
once for an animation. Subsequently, steps 2-4 are repeatedly evaluated per frame. In Step 2), per-face deformation gradients
are calculated which are applied in Step 3) to form a facial expression. In Step 4), dynamic effects are added.

user to specify lower and upper bounds beforehand. Subse-
quently, for each parameter in p, we independently sample a
value between the respective bounds with uniform distribu-
tion. Discrete parameters are handled in the same way but
without respecting particular constraints.

(6) Finally, T = (𝜙† (𝑆𝑡 ))𝑚𝑡=0 is computed and (T, S,w, p, h) is
added to D. Evaluating one time step takes approximately
10 seconds on an AMD Threadripper Pro 3995wx.

3.5 Hypernetwork
3.5.1 Architecture & Training. Having training data, we can now
design a computationally efficient neural network f to approximate
the physics-based simulation from Equation 9. Irrespective of a
particular architecture, the training goal implied byD is to optimize
on each frame

min
f

∑︁
(T,S,w,p,h) ∈D

∑︁𝑚

𝑡=0
∥𝑇𝑡 − f (𝑆𝑡 ,w𝑡 , p, h)∥2 . (16)

In words, f is trained to approximate the 𝜙-conformal expressions
from the the linearly blended expressions 𝑆𝑡 , the blending weights
w𝑡 , simulation parameters p, and the head descriptions h. Hence,
leaving out dynamic effects to begin with, the probably most naive
approach would be to learn f to directly predict vertex positions.
However, this would not allow the usage of personalized blend-
shapes at inference time that have not been used in the curation of
D. Therefore, we separate f into two high-level components

f (𝑆𝑡 ,w𝑡 , p, h) = DT(𝑆𝑡 , f𝐷𝐺 (w𝑡 , p, h)) , (17)

where DT is a deformation transfer function as in [Sumner and
Popović 2004] that applies 3 × 3 per-face deformation gradients
(DGs) predicted by f𝐷𝐺 (w𝑡 , p, h) ∈ R |𝑆 |𝑓 ×9 to the linearly blended
𝑆𝑡 . By doing so, f can also be applied to a facial expression 𝑆𝑡 which
has been formed by unseen personalized blendshapes while still
achieving close approximations of𝜙†. Fortunately, the evaluation of
DT is not more than efficiently finding a solution to a pre-factorized
linear equation system.

To implement the DG prediction network f𝐷𝐺 , we evaluated
multiple network architectures such as set transformers [Lee et al.

2019], convolutional networks on geometry images, graph neural
networks [Scarselli et al. 2008], or implicit architectures [Mildenhall
et al. 2021], but all have exhibited substantially slower inference
speeds while reaching a similar accuracy as amulti-layer perceptron
(MLP). Nevertheless, a plain MLP does not discriminate between
inputs that change per frame 𝑡 and inputs that have to be computed
only once. Therefore, we propose an adaptation of a hypernetwork
MLP [Ha et al. 2016] to implement f𝐷𝐺 in which the conditioning of
f𝐷𝐺 with respect to the simulation parameters as well as the DECA
identity is done by manipulating network parameters. Formally, we
implement

f𝐷𝐺 (w𝑡 , p, h) = z𝑡L(p, h), (18)

where L(p, h) ∈ R32×|𝑆 |𝑓 ×9 returns a tensor that only has to be
calculated once for all frames and z𝑡 = fw (w𝑡 ) ∈ R32 is the result
of a small standard MLP that processes the blending weights at
every frame 𝑡 . Each matrix ℓ𝑖 ∈ R32×9 in L(p, h) corresponds to a
face in 𝑆 and the entries are calculated as

ℓ𝑖 = fph (p, h, 𝜋 (𝑖)) . (19)

Again, fph is a small MLP and 𝜋 is a trainable positional encoding.
Please consult the supp. material for detailed dimensions of all
networks and see Figure 4 for a structural overview of f.

3.5.2 Localization. The architecture described above offers exten-
sive possibilities for artistic user interventions at inference time.
For instance, different simulation parameters p𝑖 can be used per
face 𝑖 by changing Equation (19) to

ℓ𝑖 = fph
(
p𝑖 , h, 𝜋 (𝑖)

)
, (20)

which enables a localized application of different material models.
The DT function ensures that the models are smoothly combined.

3.5.3 Dynamics. Given that locally differing simulation param-
eters are not reflected in the training data, existing approaches
to integrate dynamics in deep learning [Holden et al. 2019; San-
testeban et al. 2020], cannot be adopted. Therefore, we again use
the hypernetwork concept to achieve a piecewise-linear dynamics
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approximation. More precisely, we recursively extend f to
f (𝑆𝑡 ,w𝑡 , p, h) = 𝜸 ⊙ DT(𝑆𝑡 , f𝐷𝐺 (w𝑡 , p, h))

+ 2𝜶 ⊙ f (𝑆𝑡−1,w𝑡−1, p, h)
− 𝜷 ⊙ f (𝑆𝑡−2,w𝑡−2, p, h) ,

(21)

where 𝜶 , 𝜷,𝜸 ∈ R32×|𝑆 |𝑣 contain per-vertex dynamics parameters.
The first row of Equation (21) is the same as in Equation (17) but
the second and third rows allow for dependencies on the previous
two frames. Each entry of 𝜶 , 𝜷,𝜸 is calculated as in Equation (20)
but with dedicated MLPs f𝛼 , f𝛽 , f𝛾 . As a result, 𝜶 , 𝜷,𝜸 are again not
time-dependent and only have to be calculated once.

4 EXPERIMENTS
Before demonstrating the accuracy and efficiency of SoftDECA
(Section 4.2), we first evaluate the fitting precision of the LHM
(Section 4.1).

4.1 LHM Fitting

0mm 10mm

Figure 5: The per-vertex mean L2-error of the LHM fitting.

Muscle Wrap Skull Wrap SkullFigure 6: Exemplary fits of the LHM components skull wrap,
muscle wrap, and skull.

The fitting of the LHM is mainly composed of the data-driven
positioning of the skull wrap and the subsequent heuristic fitting of
the muscle wrap. We evaluate the crucial fitting of the skull wrap
with the open-source CT SKULLS [Gietzen et al. 2019] dataset. Since
this dataset consists of 43 instances only, a leave-one-out validation
is performed in which the vertex-wise L2 errors are measured.
Earlier methods that position the skull within the head, mainly use

sparse soft tissue statistics measured in normal directions starting
from very few points on the skull [Beeler and Bradley 2014; Ichim
et al. 2016]. We compare our approach to the multilinear model of
Achenbach et al. [2018; 2019], who have shown a more robust and
precise positioning by capturing dense soft tissue statistics as radii
of spheres surrounding the skull.

Both models cannot achieve a medical-grade positioning with
errors between approximately 2mm and 4mm. The MLM achieves
a higher precision with a mean error of 1.98mm than our approach
that dispositions the skull by 3.83mm on average. However, the
MLM cannot prevent collisions that might crash physics-based
simulations. Also, our fitting algorithm produces large errors only
in regions that are of less importance for facial simulations as can
be seen in Figure 5. The errors are predominately distributed in the
back area of the skull since here the rectangular constraints of our
fitting procedure can presumably no longer be aligned well with
the skin wrap. Figure 6 displays fitting examples.

4.2 SoftDECA
4.2.1 Dataset & Training. To train and evaluate f, we assemble a
dataset of 500k training and test instances by using the pipeline
from Section 3.4. The parallelized dataset creation took five days
and required one terabyte of storage. To match the uneven sizes
of the parameter spaces, 75% of the produced data is static data in
which all but the dynamic parameters 𝛼, 𝛽,𝛾 are sampled and only
the remaining 25% of the data is simulated dynamically. As a result,
6250 dynamic sequences have been generated, each of which has
a length of 16 while the static examples consist of only one frame
per example. To initialize the dynamic sequences with a reasonable
velocity, a longer sequence of length 2048 has been simulated with
fixed dynamics parameters a priori. For each dynamic sequence,
a random observed velocity of the long sequence is drawn as the
initialization. The dataset is split in 90% for training and 10% for
testing while neither the same identity nor the same simulation
parameters nor the same facial expression occurs in both.

For training, the Adam optimizer performs 200k update steps
with a learning rate of 0.0001. The learning rate is linearly decreased
to 0.00005 over the course of training and a batch size of 128 is
applied. In total, the training specifications result in an approxi-
mate runtime of 8 hours on an NVIDIA A6000. The comparatively
short training time can straightforwardly be explained by the effi-
cient network design and the less noisy training data than usually
encountered for instance in image-based deep learning. We quanti-
tatively evaluate SoftDECA based on the L2 reconstruction error
with respect to the targeted physics-based simulation and the com-
putational runtimes. Besides, we compare it against the Subspace
Neural Physics (SNP) [Holden et al. 2019] and the SoftSMPL [San-
testeban et al. 2020] architectures adapted to facial simulations.
These are, to the best of our knowledge, state-of-the-art methods
for fast approximations of physics-based simulations. An overview
of all results is given in Table 1. The stated runtimes are averages of
ten runs measured on a consumer-grade Intel i5 12600K processor.
All implementations rely on PyTorch2.

2https://pytorch.org

https://pytorch.org
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Figure 7: Exemplary results of SoftDECA in comparison to the targeted physics-based facial simulation as well as the inputted
linear blendshape expressions. Reconstruction errors are plotted on the simulated expressions.

Table 1: SoftDECA test results in comparison to adapted SNP [Holden et al. 2019] and SoftSMPL [Santesteban et al. 2020]
architectures as well as ablations. The runtimes are averages measured on a consumer-grade Intel i5 12600K processor. External
refers to the 3Dscanstore dataset. Small and large correspond to the size of the inspected MLP.

Model Ours SoftSMPL SNP Ablation
Static Dynamic External Static (Small) Static (Large) Dynamic Dynamic Face-wise Only Vertices

Error in mm 0.23 0.41 0.44 1.67 0.16 0.22 0.14 0.17 0.16
Time in ms 7.45 9.87 7.45 7.62 46.61 47.39 46.61 34.92 0.72
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4.2.2 Quantitative Analysis. First of all, SoftDECA provides very
close approximations in static and dynamic animations with aver-
age test reconstruction errors of only 0.22mm and 0.41mm, respec-
tively. Hence, overall, it becomes evident that SoftDECA generalizes
across different human identities, facial expressions, and simulation
parameters. Nevertheless, the expressions are all obtained from un-
personalized blendshapes which is why we further evaluate on a
static external dataset from the 3DScanstore3. In this dataset, for
each of seven heads, between 20 and 35 scanned facial expressions
are available which we convert into personalized ARKit blendshap-
es using example-based facial rigging [Li et al. 2010]. Starting from
there, we create a test dataset as before. Although the 3DScanstore
examples are likely not covered by the DECA distribution, the
reconstruction error only slightly increases to 0.44mm.

Despite the high approximation quality, SoftDECA needs only
7.45ms to calculate a static frame on average while a runtime of
9.87ms is needed for a dynamic frame. This brief runtime makes
SoftDECA appealing even for demanding virtual reality applica-
tions. For applications in which unseen personalized blendshape
are not desired, we also test a variant of SoftDECA that directly
predicts vertex positions. This version achieves an accuracy of 0.16
mm and can be accelerated to only 0.71ms per frame.

4.2.3 Static Comparisons. For static simulations, SoftDECA can
only be compared to SoftSMPL as SNP is solely designed to ap-
proximate dynamic effects. Essentially, the difference between the
SoftDECA and the SoftSMPL architecture is the difference between
our hypernetwork MLP and a standard MLP. SoftSMPL is origi-
nally designed for full bodies and has a motion descriptor as input
that describes a body and its state. Adapted to our case, these are
the blendshape weights, simulation parameters, and the identity
code. First, to keep the inference times approximately consistent,
we employ the same network dimensions for the standard MLP
as in the hypernetwork. As a result, the reconstruction error of
the SoftSMPL MLP increases significantly to an average of 1.67mm.
Therefore, we additionally investigate a larger MLP which achieves
approximately the same reconstruction error as SoftDECA. In turn,
however, the runtime increases tremendously to 46.61ms. Another
canonical alternative to the hypernetwork is a standard MLP that in
the last layer does not map to all DGs simultaneously but calculates
the DGs face-wise. The reconstruction error is low with 0.17mm,
but the runtime is also high with 34.92ms. Other architectures like
CNNs, GNNs, or transformers could not be evaluated in real-time
on a consumer-grade CPU with sufficient accuracy.

4.2.4 Dynamic Comparisons. For dynamic simulations, SoftDECA
can be compared against both SoftSMPL and SNP. Contrary to
SoftDECA, SoftSMPL and SNP compute dynamics in a latent space
and not directly on vertices. Both differ from one another in that
SoftSMPL additionally relies on a recurrent GRU network [Chung
et al. 2014], whereas SNP is purely based on a standard MLP. In both
cases, we compare solely with the larger network design mentioned
earlier since we are mainly interested in evaluating the accuracy of
our dynamic approximation and not in comparing runtimes. It can
be observed that the SoftSMPL as well as the SNP design achieve
slightly improved reconstruction errors with 0.22mm and 0.24mm,

3https://www.3dscanstore.com

respectively. However, since both do not work vertex-wise, they
are not suitable for locally varying simulation parameters.

4.2.5 Qualitative Analysis. A visual demonstration of SoftDECA’s
capabilities is given in Figure 7 where the SoftDECA predictions
are contrasted with the targeted physics-based facial simulation.
For instance, in a) it can be observed that, although collisions are
not guaranteed to be removed, they remain largely dissolved. In b),
the triangle strain of the skin is increased locally in the area of the
cheeks, leading to the formation of wrinkles in this region. In c), it is
demonstrated that external effects can also be included by means of
increased gravity. A surgical manipulation is shown in d), in which
the jaw is lengthened along the vertical axis in the neutral state
while the volume of the head is maintained. The representation of
a humanoid alien in e) illustrates the robustness of SoftDECA even
outside the DECA distribution. This robustness is mainly achieved
by transferring DGs instead of directly predicting vertex positions.
Our interpretation of zombification is achieved in f) by growing
the area of the skin. This effect highlights that SoftDECA is able
to closely approximate such excessive high-frequency details, too.
Finally, in g-h) we present how different weight additions can be
simulated in a non-linear way. For this purpose, we raise the volume
of the soft tissue by 20% and 40%. Due to the already comprehensive
training domain of SoftDECA, many other effects can be animated
in a computationally efficient way that are not displayed in Fig-
ure 7. We refer the reader to the supp. material where additional
simulations are shown in a video including dynamic effects.

5 LIMITATIONS
Although SoftDECA inherits most of the advantages of physics-
based facial animations, it lacks the intrinsic handling of interactive
effects such as wind or colliding objects. Moreover, although we
allow for extensive localized artistic interventions, mixtures of
material properties have not been part of the training data. Incorpo-
rating such mixtures into the training data is difficult as it is hard to
define an adequate mixture distribution. Nonetheless, the smooth
material blending of SoftDECA visually appears to be a sufficient
approximation.

6 CONCLUSION
In this work, we presented SoftDECA, a computationally efficient
approximation of physics-based facial simulations even on consu-
mer-grade hardware. With a few exceptions, most simulation capa-
bilities are retained, such as dynamic effects, volume preservation,
wrinkle generation, and many more. At this, SoftDECA’s runtime
is attractive for high-performance applications and low-budget
hardware. Moreover, it is lightweight to deploy as it generalizes
across different head shapes, facial expressions, and material prop-
erties. Finally, the ability to make localized changes after training
constitutes an attractive framework for artistic customization.

We aim to improve SoftDECA in at least two directions. On the
one hand, with an even more accurate anatomical model that repre-
sents e.g. trachea and esophagus more precisely. On the other hand,
recent results [Romero et al. 2022] show that contact deformations
can also be efficiently learned. Since people touch their faces dozens
of times [Spille et al. 2021] a day, adding contact-handling for more
realistic gestures may improve immersion significantly.

https://www.3dscanstore.com
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