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Figure 1: We visualize the per-element stiffness matrix condition numbers of the discrete polygon Laplacian, with lower values
(blue) indicating better conditioned local matrices than higher values (magenta). The polygon Laplacian of Bunge et al. [BHKB20]
suffers from low-quality elements (left), which deteriorate the condition of the global Laplace matrix. Our proposed polygon Lapla-
cian (center) and custom-tailored polygon mesh optimization (right) considerably improve numerical conditioning and robustness.
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Abstract
Discrete Laplacians are the basis for various tasks in geometry processing. While the most desirable properties of the dis-
cretization invariably lead to the so-called cotangent Laplacian for triangle meshes, applying the same principles to polygon
Laplacians leaves degrees of freedom in their construction. From linear finite elements it is well-known how the shape of tri-
angles affects both the error and the operator’s condition. We notice that shape quality can be encapsulated as the trace of the
Laplacian and suggest that trace minimization is a helpful tool to improve numerical behavior. We apply this observation to the
polygon Laplacian constructed from a virtual triangulation [BHKB20] to derive optimal parameters per polygon. Moreover, we
devise a smoothing approach for the vertices of a polygon mesh to minimize the trace. We analyze the properties of the optimized
discrete operators and show their superiority over generic parameter selection in theory and through various experiments.

CCS Concepts
• Computing methodologies → Mesh geometry models; • Mathematics of computing → Mesh generation; Discretization;

1. Introduction

The discrete Laplace-Beltrami operator is one of the most impor-
tant tools in computer graphics and geometry processing, as it is
employed for smoothing, fairing, parameterization, deformation,
geodesic distances, and many more [BKP∗10, SCV14]. Due to its
importance, its properties have been thoroughly investigated and

† The first two authors contributed equally to this work.

are well understood [WMKG07]. For triangle meshes the cotangent
Laplacian [PP93,MDSB03,DMSB99,Dzi88] is used almost exclu-
sively, since it satisfies crucial properties such as linear precision,
symmetry, and negative semi-definiteness [WMKG07, War08].

While discrete operators for triangle meshes are well understood,
this is not the case for general polygon meshes, despite the grow-
ing demand for the latter in many modeling and engineering ap-
plications. As noted by Peng et al. [PPW18], meshing algorithms
commonly produce tessellations that incorporate non-triangular el-
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ements, such as quad-dominant meshes, mixed tri/quad meshes,
or Voronoi-based polygon meshes. Peng et al. further emphasize
that these patterns have various applications in architecture, in-
dustrial design, and art. Polygon meshes (and differential oper-
ators on them) are used in the computer animation industry, as
they effectively capture geometric features and facilitate both artis-
tic design and fabrication processes [dGBD20]. Having a Lapla-
cian that seamlessly works on all these meshes is a valuable
tool, and several derivations for such operators have been sug-
gested [dGBD20, BHKB20, BBA21], showing similar but slightly
different performance in various applications [BB23].

Our central observation is that the approach of Bunge et
al. [BHKB20] – using a virtual triangulation of the polygons –
allows applying the knowledge from the linear Finite Element
Method (FEM) about triangle shapes to construct an optimized
polygon Laplace operator. From linear FEM it is known that (and
how) the shape of the elements (i.e., triangles) affects accuracy
and numerical stability of the “cotan” Laplacian [She02]: In gen-
eral, the ratio of squared edge lengths to triangle areas should be
small. We aim at creating virtual triangulations that minimize this
ratio. Notably, this measure has appeared before as the harmonic
index of a triangle and has been linked to the Delaunay triangula-
tion [Mus97] and the discrete Laplace operator [BS07]. In particu-
lar, the sum of the harmonic indices across all triangles in the mesh
corresponds to the trace of the cotangent stiffness matrix [Ale19].
Using the minimization of the trace as the guiding principle, we
derive optimal positions for the virtual vertices within the poly-
gons and optimal weights to express these points as affine combina-
tions of the polygon vertices. Additionally, we derive a smoothing
scheme that optimizes the vertex locations (for applications where
this is permissible) based on the same principles.

We analyze how minimizing the trace affects the spectrum of
the discrete Laplace operator and compare the optimized Lapla-
cian in a variety of applications to the ones from the literature.
Our experiments demonstrate that for low-quality polygon meshes
our optimized operator consistently and significantly improves ro-
bustness and accuracy – with only negligible computational cost
for constructing the discrete operator and no computational over-
head for solving the involved linear systems. We integrated our
robust Laplacian operator and polygon mesh smoothing into the
source code of Bunge and Botsch [BB23], which can be found at
https://github.com/mbotsch/polyLaplace.

2. Related Work

Polygon Laplacians Discrete differential operators typically
emerge from applying methods such as the Finite Element Method
(FEM), the Finite Volume Method (FVM), or Discrete Exterior
Calculus (DEC) to continuous differential or integral equations. For
general polygonal meshes, these different methods lead to distinct
but related discretizations of the Laplace operator, on which the
state-of-the-art report by Bunge and Botsch [BB23] provides an
extensive background. We highlight the most prominent operators
in this section, we refer to Bunge and Botsch for more details.

Alexa and Wardetzky [AW11] generalize to non-planar polygon
meshes by projecting each polygon onto the plane maximizing

its vector area. They introduce an inner product stabilization term
influenced by mimetic finite differences [BLS05]. De Goes et
al. [dGBD20] derive a range of DEC operators for polygon meshes.
They expand on the concepts of Alexa and Wardetzky [AW11] and
generalize the same planar inner product matrix [BLS05] using
principles from the Virtual Element Method (VEM) [BdVBM13].
They define the gradient operator based on the co-gradient, from
which the other operators are then derived. These DEC-based
Laplacians require a stabilization term that regulates the dimen-
sion of the kernel, which may contain more than constants for two-
manifolds embedded in 3D. The regularization is scaled by a hy-
perparameter λ, and while the methods work well depending on
the chosen λ, this degree of freedom leaves little room to link the
operator’s properties to the underlying tessellation.

The finite element method discretizes a continuous surface into
simple elements to approximate functions with the help of local
basis functions. A possible way to obtain these shape functions
for general polygons is to use generalized barycentric coordinates
[HS17, Wac75, Flo03, JSW05, JMD∗07, Suk04, HS08], which are
typically defined for planar elements only. Another FEM approach
that works for non-planar surface meshes is the linear virtual re-
finement method by Bunge et al. [BHKB20]. They divide each
polygon into a virtual triangle fan by introducing a virtual vertex.
Standard techniques like the cotangent Laplacian can then be used
on the virtual triangulation. The virtual refinement process is con-
cealed through prolongation and restriction matrices, introducing
two degrees of freedom: the placement of the virtual vertex and the
weights within the prolongation matrices.

The Diamond Laplacian [BBA21] is defined on polygonal and
polyhedral meshes. It utilizes the Discrete Duality Finite Volume
Method [Her09, CH11] to define a generalized gradient and diver-
gence operator, which can be combined to obtain the Laplacian.
This operator uses the same virtually refined mesh described by
Bunge et al. [BHKB20] and, therefore, the same degrees of free-
dom. However, since the Laplacian is based on the FVM, which
relies on two tessellations in the form of a dual and primal mesh,
the analysis to uncover a geometric link to the original polygons
would be increasingly convoluted in contrast to the original method
by Bunge et al. [BHKB20] on which we will focus in this paper.

Numerical Accuracy and Robustness On Polygons The shape
of a simplex can affect the quality of linear FEM discretizations
for triangles and tetrahedra. Shewchuk [She02] analyzed various
aspects of this phenomenon, which were later expanded on in
the exhaustive survey by Sorgente et al. [SBMS23]. However,
Sorgente et al. also noted that many concepts used to evalu-
ate the geometric quality of lower-degree polytopes cannot be
easily transferred to generic polygons. To address this issue,
several works developed shape quality metrics specifically
for surface and volume polytopes, such as Lipnikov [Lip13],
Mu et al. [MWW15], and Gillette and Rand [GR17]. In a
recent study, Attene et al. [ABB∗21] investigated the corre-
lation between the performance of VEM [BdVBM13] and
the underlying polygonal tessellation. Our paper expands on
this type of analysis and establishes a geometric link between
polygons and the linear virtual refinement method [BHKB20].
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Polygon Mesh Smoothing The ability to enhance the quality of
a mesh by improving, or smoothing the shapes of the individual
faces, is a valuable tool in geometry processing. The effectiveness
of these algorithms has been extensively studied, particularly in 2D.
This extends to meshes in 3D when the placement of (interior) ver-
tices is less critical, e.g., tessellations of planes in CAD-like ob-
jects as long as sharp feature edges and corners are retained. Mesh
smoothing impacts numerical stability and discretization error, a
crucial consideration in computational simulations. Numerous ap-
proaches have been introduced for triangle meshes, with some ex-
tending to quads or polygonal meshes.

Zhou and Shimada approach [ZS00] focuses on optimizing the in-
ner angles within mixed 2D meshes. It has been shown to be ef-
fective for triangles, as adjusting the angles generally improves the
ratio of edge lengths to area (Section 5). The extension to quads
is based on introducing virtual diagonals, and it is unclear how to
extend this concept to general polygons. The works of Garimella
et al. [GSK02, GSK04, GS04] aim for optimizing triangle, quad,
mixed and polygon manifold surface meshes. They formulate an
objective function to minimize the condition numbers of local Ja-
cobian matrices, which then indirectly improve the global mesh
quality. However, by construction, this approach can only incor-
porate direct vertex neighbors and, therefore, does not generalize
well for larger polygons, limiting the effect on the condition of the
global stiffness matrix. Further, Knupp et al. [KMS02] proposed
mesh optimization using Reference Jacobian Matrices, which helps
preserving mesh details but is not suitable for polygon meshes due
to ambiguous local Jacobian definitions.

Vartziotis et al. [VAGW08] propose the Geometric Element Trans-
formation Method (GETMe) to successively regularize low quality
triangles by iteratively applying a geometric transformation until
a user defined quality level is reached. Generalizations for general
polygonal, tetrahedral [VW12] and later general polyhedral meshes
are suggested, but the official GETMe implementation currently
only supports smoothing 2D polygonal shapes with fixed boundary
vertices. Our approach sets itself apart by optimizing the complete
polygonal shape, and not only the interior angles at vertices. It is
specifically tailored for the use of our proposed Laplace operator,
taking into account the entire polygonal configuration in relation to
the virtual vertex.

3. Laplacian on Triangle meshes

In this section, we provide a brief introduction to the concept of
linear Lagrange basis functions on triangle meshes and revisit the
definition of the cotangent Laplacian. Consider a triangle mesh
MT = (V,T ) defined by a set of vertices V = {v1, . . . ,vm} and
triangle faces T , where each vertex vi ∈ V has a 3D position
xi = (xi,yi,zi). The linear Lagrange basis functions ψi are unique,
C0 continuous, piecewise linear functions associated with the ver-
tices vi. They satisfy the Lagrange interpolation property

ψi(x j) = δi j :=

{
1 if i = j,
0 otherwise,

(1)

and are linear on each triangle t ∈ T , making them piecewise lin-
ear on the mesh. The finite element method (FEM) uses these basis

functions to interpolate a given function u with the degrees of free-
dom ui associated with vertices:

u(x)≈
m

∑
i=1

uiψi(x).

Therefore, instead of solving a partial differential equation directly,
FEM approaches solve for suitable coefficients ui that approximate
the unknown solution u. By construction, the linear Lagrange basis
functions form a partition of unity and satisfy the linear precision
property.

The Lagrange basis {ψ1, . . . ,ψm} on the triangle mesh MT allows
to define the strong form of the cotangent Laplace operator

L =−
(

M△
)−1

S△, (2)

using mass and stiffness matrices M△,S△ ∈ Rm×m. Note that in
the geometry processing literature, the term “cotangent Laplacian”
often refers to the stiffness matrix S△ only (the integrated weak
form) and omits the mass matrix M△. Both matrices are defined as

M△
i j =

∫
MT

ψi ψ j =



∣∣ti jk
∣∣+ ∣∣t jih

∣∣
12

if v j ∈N (vi)

∑
vk∈N(vi)

M△
ik if j = i,

0 otherwise,

(3)

S△
i j =

∫
MT

〈
∇ψi,∇ψ j

〉
=


−

cotαi j + cotβi j

2
if j ∈N (vi) ,

− ∑
vk∈N(vi)

S△
ik if j = i,

0 otherwise.
(4)

Here, the triangles ti jk and t jih are adjacent along the edge ei j =
(vi,v j) and their areas are denoted by

∣∣ti jk
∣∣ and

∣∣t jih
∣∣. The respective

interior angle of ti jk and t jih opposite to the edge ei j are given by
αi j and βi j, while N (vi) refers to the one-ring vertex neighborhood
around vi. The cotangent of the corner angle θk at vertex vk within a
triangle ti jk is given as the following ratio between squared triangle
edge lengths and triangle area

cotθk =

∣∣e jk
∣∣2 + |eik|2 −

∣∣ei j
∣∣2

4
∣∣ti jk

∣∣ . (5)

The scalar
∣∣ei j

∣∣ denotes the length of edge ei j. Note that the def-
inition of our stiffness matrix is positive semi-definite in contrast
to the negative semi-definite Laplacian matrix L. While the con-
tinuous Laplacian is a negative semi-definite operator and should
be treated as such in the discrete setting, our choice for the sign of
the stiffness matrix establishes that its eigenvalues are all greater or
equal to zero, which makes them more convenient to handle.

The key principle of FEM is to divide a large, global problem into
smaller and more manageable local equivalents.. In this spirit, we
can obtain the same matrices as defined in Equations (3) and (4) by
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constructing local mass and stiffness matrices M△
t ,S△

t ∈ R3×3 per
triangle t: (

M△
t

)
i j

=
∫

t
ψi ψ j, (6)(

S△
t

)
i j

=
∫

t

〈
∇ψi,∇ψ j

〉
. (7)

These local matrices are then assembled into M△ and S△ by as-
signing each vertex vi the i-th row and column of the global matrix.
The entries are then the sum over the respective values in the local
triangle matrices in which the vertex vi was involved.

4. Laplacian on Polygon Meshes

In this section we briefly introduce the polygon Laplacian based on
virtual refinement proposed by Bunge et al. [BHKB20].

Consider a polygon mesh M = (V,F) embedded in R3 with ver-
tices V and faces F . The virtual refinement method defines a set
of polygonal shape functions {ϕ1, . . . ,ϕm} by introducing virtual
vertices within each polygon of the mesh. These polygons can be
non-planar and non-convex, but have to be star-shaped in order for
the method to work as intended.

We explain the concept for a single polygon f ∈ F with n vertices
(v1, . . . ,vn). Inserting a virtual vertex v f turns the polygon into a
virtual triangle fan around v f . The position of the virtual vertex is
expressed as an affine combination of the polygon vertices:

x f =
n

∑
i=1

wi xi with
n

∑
i=1

wi = 1. (8)

We define w f = (w1, . . . ,wn) ∈ Rn as the vector containing the
affine weights wi of each face f . For a planar polygon, the virtual
vertex should be placed within the kernel of the face, which refers
to the set of points from which the entire boundary of the polygon
is visible. This prevents flipped virtual triangles around x f and thus
does not introduce negative areas. For arbitrary polygons, Bunge et
al. suggest the minimizer of the sum of squared areas of the trian-
gles around x f . This point is guaranteed to lie in the kernel of the
polygon if it happens to be planar. Since the affine weights w f that
represent x f according to (8) are underdetermined, they propose to
use the solution with least L2 norm.

Introducing the virtual point allows to define linear Lagrange basis
functions ψi on the virtual triangle fan, which are combined into
the final polygon shape functions as

ϕi = ψi +wiψ f , (9)

where the virtual degree of freedom at v f is redistributed to the
original vertices vi through the chosen weights wi. The polygon
shape functions are then used to define mass and stiffness matrix in
the same manner as described in Equations (3) and (4).

Alternatively, one can combine the affine weights of the polygon
into a local (n+1)×n prolongation matrix

Pi j =

{
δi j for 1 ≤ i ≤ n,
w j otherwise.

(10)

The local polygon Laplacian can then be obtained by constructing
the cotangent mass and stiffness matrices M△ and S△ on the virtual
triangle fan and “sandwiching” them with P:

M7 = PTM△P, (11)

S7 = PTS△P. (12)

Following Bunge et al.’s [BHKB20] recommendation, we use the
diagonal (lumped) mass matrix.

5. Accuracy and Robustness on Triangle Meshes

For linear FEM, Shewchuk has analyzed how the shape of triangles
affects various aspects of the discretization [She02]. He argues that
for the interpolation error it is more important to control the error in
the gradients and gives a smooth, size-independent measure of the
quality of an element in this respect [She02, Tab. 4: scale-invariant
(smooth) gradient interpolation quality measure.]∣∣ti jk

∣∣(∣∣ei j
∣∣2 ∣∣e jk

∣∣2 |eik|2
) 1

3
, (13)

where larger ratios indicate better shaped triangles. For analyzing
(or improving) the stiffness matrix’ condition number, again with a
smooth and scale-independent measure, he suggests [She02, Tab. 4:
scale-invariant (smooth) conditioning quality measure.]∣∣ti jk

∣∣
1
3

(∣∣ei j
∣∣2 + ∣∣e jk

∣∣2 + |eik|2
) . (14)

The condition number κ of a quadratic matrix A is defined as the
ratio between its largest and smallest eigenvalue

κ(A) =
λmax(A)

λmin(A)
(15)

and is a common measure to quantify numerical stability. Equa-
tion (14) is inversely proportional to the harmonic index of the tri-
angle [Mus97, BS07, CXGL10]:

η
(
ti jk

)
=

∣∣ei j
∣∣2 + ∣∣e jk

∣∣2 + |eik|2∣∣ti jk
∣∣ = 4 ∑

vi∈t
cotθi. (16)

Notice that the two quality measures differ only by how the average
is taken over the squares of the three edge lengths. By the AM-GM
inequality, the arithmetic mean in the denominator of the condition
quality measure (14) is not smaller than the geometric mean in the
denominator of the interpolation error measure (13). This means
that minimizing the harmonic index η(ti jk) improves the condition
of the stiffness matrix w.r.t. the triangle ti jk, and generally also im-
proves the accuracy of the gradient in the solution. This is the case,
because triangles with large angles contain points where the gradi-
ent interpolation error explodes [She02]. Since the minimization of
the harmonic index avoids angles close to 0 and 180 degrees, these
shapes do not occur, leading to well-behaved gradients.

© 2024 The Authors.
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The work of Alexa [Ale19] shows that the trace of the stiffness
matrix (per element or for the whole mesh) is proportional to the
sum of the harmonic indices of the triangle(s):

H(T ) = ∑
ti jk∈T

η(ti jk) (17)

= 4 ∑
ti jk∈T

cotθi + cotθ j + cotθk (18)

= 4tr(S△). (19)

In the following, we will use the idea of minimizing the trace of
the triangle cotan operator for optimizing the operators for polygon
meshes as well as improving vertex positions.

6. Accuracy and Robustness on Polygon Meshes

In Section 5 we established that a smaller trace of the cotangent
stiffness matrix generally indicates a numerically preferable trian-
gle mesh. In this section, we aim to investigate whether the same
observation holds for the trace of the polygon stiffness matrix de-
fined by Bunge et al. [BHKB20] and whether we can establish a
similar connection to the geometry of the polygon.

When dealing with triangles, the cotangent Laplacian is solely
based on the tessellation and cannot be altered unless the triangle
mesh is modified. However, when working with polygons, we have
two degrees of freedom to consider: the affine weights used in the
prolongation matrix and the placement of the virtual vertex. As a
result, we can optimize these parameters with respect to the trace
of the polygon stiffness matrix without changing the polygon mesh
and examine how it affects the Laplacian.

6.1. Optimal Prolongation Weights

We will start with the affine weights for the virtual vertex. As
in Section 4, assume we are given a polygon f ∈ F with ver-
tices (v1, . . . ,vn) and its corresponding virtual face vertex v f . Let
S△ ∈R(n+1)×(n+1) denote the local cotangent stiffness matrix con-
structed on the virtual triangulation and w f = (w1, . . . ,wn)

T ∈ Rn

the set of affine weights. We build the local prolongation matrix
P ∈ R(n+1)×n as defined in (10) and obtain the local polygon stiff-
ness matrix S7 as established in (12).

The objective is to minimize the trace of S7 with respect to the indi-
vidual prolongation weights wi ∈ w f . We first rearrange the poly-
gon stiffness matrix into a similar pattern as in Equation (9): We
divide the matrix into the cotangent entries related to the existing
polygon vertices and a matrix that redistributes the values associ-
ated with the virtual vertex v f :

S7 = PTS△P = S△
sub +W. (20)

The matrix S△
sub is the symmetric n× n submatrix of S△ exclud-

ing the row and column associated with the virtual vertex. In our
setting, the cotangent weights associated with the virtual vertex are
located at row/column (n+1) of S△. We will use the vector

s =
(

S△
1,n+1, . . . ,S

△
n,n+1

)T
∈ Rn

and its respective entries (s1, . . . ,sn) to refer to the first n entries of
the virtual vertex column. The matrix W ∈ Rn×n can be defined as

Wi j =


2wisi −w2

i

n

∑
k=1

sk if i = j,

wis j +w jsi −wiw j

n

∑
k=1

sk otherwise,
(21)

and redistributes the values of the virtual vertex onto the original n
nodes of the polygon.

We minimize the trace of the polygon stiffness matrix with respect
to the affine weights w1, . . . ,wn by setting the respective partial
derivatives to zero. Here we only have to consider the trace of the
matrix W, since S△

sub does not depend on the weights wi:

∂tr(S7)

∂wi
=

∂tr(W)

∂wi
= 2si −2wi

n

∑
j=1

s j. (22)

Setting Equation (22) to zero leads to the trace-optimal weights

wi =
−(cotαi,n+1 + cotβi,n+1)

−∑n
j=1 cotα j,n+1 + cotβ j,n+1

=
si

∑n
j=1 s j

=:
si

ω
, (23)

with ω ∈R referring to the negated (n+1)-th diagonal entry of S△

associated with the virtual vertex.

These trace-minimizing weights are well-known as the discrete
harmonic coordinates [PP93, EDD∗95] and can be computed
through Equation (23) without numerical optimization, in contrast
to the least norm weights suggested in the original paper. Note that
these weights are affine, since they by construction sum to one, and
that the denominator ω is guaranteed to be non-zero as long as the
virtual vertex v f is positioned in the kernel of a star-shaped poly-
gon.

We point out that using these weights in the prolongation step sim-
plifies the entries of the matrix W to

Wi j =

{
s2

i /ω if i = j

sis j/ω otherwise

}
=

1
ω

ssT, (24)

which we will exploit in the upcoming section.

6.2. Eigenvalues of the Polygon Stiffness Matrix

In this section, we uncover a geometric link between the local
eigenvalues of the polygon stiffness matrix and the polygon itself.
Assume the local prolongation matrix P on the polygon f is ob-
tained with the discrete harmonic weights established in the pre-
vious section. Given that S7, S△

sub, and W are all n× n Hermitian
matrices and S7 = S△

sub +W, we can make the following observa-
tion: Let µi,νi and ρi be the respective eigenvalues of S7, S△

sub, and
W, ordered as follows:

S7 : µ1 ≥ ·· · ≥ µn−1 > µn = 0, (25)

S△
sub : ν1 ≥ ·· · ≥ νn−1 ≥ νn, (26)

W : ρ1 ≥ ·· · ≥ ρn−1 ≥ ρn. (27)

Applying Weyl’s inequality [Wey12] yields

νi +ρn ≤ µi ≤ νi +ρ1, i = 1, . . . ,n. (28)

© 2024 The Authors.
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which links the individual eigenvalues of the polygon stiffness ma-
trix S7 to the eigenvalues of the submatrix S△

sub.

But what about the eigenvalues of W? Using the discrete harmonic
coordinates as prolongation weights allows us to directly determine
the eigenvalues ρi. As an outer-product matrix (see Equation (24))
W has rank one and a kernel of dimension n− 1, leading to n− 1
vanishing eigenvalues. The only remaining non-zero eigenvalue is

ρ =
∥s∥2

ω
(29)

with the eigenvector s, since

Ws =
(

1
ω

ssT
)

s = ∥s∥2

ω
s. (30)

The question remains whether ρ is the largest or the smallest eigen-
value of W. Since S△ is positive semi-definite, ω is negative, which
means that ρn = ρ is negative as well and is therefore the smallest
eigenvalue of W. This allows us to simplify Equation (28) to

νi +
∥s∥2

ω
≤ µi ≤ νi for i = 1, . . . ,n. (31)

Therefore, as a first conclusion, we can observe that the i-th eigen-
value µi of the polygon stiffness matrix is confined by the i-th eigen-
value νi of the submatrix S△

sub.

Conveniently, the matrix S△
sub is an n-dimensional principal subma-

trix of the (n+ 1)-dimensional symmetric cotangent stiffness ma-
trix S△, allowing us to apply Cauchy’s Interlace Theorem [Hwa04],
which reveals the following eigenvalue relationship:

0 = λn+1 ≤ νn ≤ λn ≤ ·· · ≤ λ2 ≤ ν1 ≤ λ1, (32)

with λi denoting the n+1 eigenvalues of the cotangent stiffness ma-
trix S△. Merging this inequality with the upper and lower bounds
from Equation (31) results in the final bounds

λi+1 +
∥s∥2

ω
≤ νi +

∥s∥2

ω
≤ µi ≤ νi ≤ λi, i = 1, . . . ,n.

(33)

We are now able to draw a powerful conclusion: All eigenvalues
of the polygon stiffness matrix S7 are less than or equal to the
corresponding eigenvalues of the cotangent stiffness matrix S△.

Therefore, the upper bound in Equation (33) directly establishes a
geometric connection between the stiffness matrix and the polygon,
albeit indirectly through the virtual triangle fan. Polygons that al-
low their virtual vertex to form a high-quality triangle fan (by the
standards established in Section 5) can minimize the trace of the
virtual cotangent stiffness matrix and, consequently, improve that
of the polygon stiffness matrix. Not only that, but a good virtual tri-
angulation also implies a cotan matrix of higher quality, which also
improves the performance of the polygon Laplacian. Furthermore,
the condition number of the polygon stiffness matrix is expected to
improve proportionally to that of the cotan Laplacian.

6.3. Optimal Choice for Virtual Vertex Placement

The findings from the previous section establish a suitable objec-
tive function for the remaining degree of freedom: the placement

of the virtual vertex. The point that minimizes (within the kernel
of the polygon) the trace of the cotangent stiffness matrix will also
minimize the harmonic index of the virtual triangle fan (see Equa-
tion (17)) and consequently further improve the quality of individ-
ual (virtual) triangles.

We start with the case of a planar polygon and consider the cotan
stiffness matrix S△ on the virtual triangles T f of a polygon f with
virtual vertex v f . We want to minimize the following energy with
respect to the virtual vertex position x f :

E
(
x f

)
= tr

(
S△

)
= ∑

t∈T f

∑
v j∈t

cot(θ j). (34)

We minimize this energy using the projected Newton method,
which ensures a positive definite Hessian, and combine it with
line search. In order to prevent virtual triangles from flipping, we
start the minimization from the squared area minimizer of Bunge et
al. [BHKB20] (which is guaranteed to lie in the polygon’s kernel)
and return an infinite cost during the line search in case of neg-
ative or degenerate triangle areas. This avoids artifacts caused by
the flipped triangles and guarantees the validity of our prolongation
weights, since ω cannot become zero. Combining Equation (34)
and the penalty term leads to a virtual vertex position that mini-
mizes the trace of the stiffness matrix within the polygon’s kernel.

The discrete harmonic coordinates, as mentioned by Hormann and
Floater [HF06], can represent points in the interior of a polygon
as long as the resulting virtual triangle areas are positive and the
edges connecting the virtual point to the polygon vertices remain
non-degenerate. While a convex polygon satisfies these criteria for
any point in its interior, star-shaped polygons guarantee these prop-
erties solely within the element’s kernel. This condition is non-
negotiable since reproducing the virtual vertex through the prolon-
gation weights is necessary to retain the linear precision property
for the polygon Laplacian [BHKB20].

The above approach, however, does not extend to polygon meshes
embedded in R3 with potentially non-planar faces. First, we lose
the notion of signed triangle area and flipped triangles. Second, for
non-planar polygons only a limited set of points can be represented
by discrete harmonic coordinates: Assuming that the virtual point
x f is represented by the weights wi, and exploiting that the discrete
harmonic weights are just the (normalized) cotangent weights for
discretizing the Laplacian, we get

n

∑
j=1

w j x j = x f (35)

⇔
n

∑
j=1

s j

ω
x j =

n

∑
j=1

s j

ω
x f (36)

⇔
n

∑
j=1

s j
(
x j −x f

)
= 0 (37)

⇔ ∆x f = 0. (38)

As the cotangent Laplacian corresponds exactly to the gradient of
surface area [DMSB99], the last condition means that the virtual
vertex has to minimize the sum of virtual triangle areas for the
weights (23) to be able to reproduce the point. This is not an issue
in the planar setting, where any point leads to the same area. For
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x̂ f

v j

x f

Figure 2: Left: Non-planar polygon and its orthogonal projection
with maximum area. The projection’s virtual vertex position x̂ f is
the trace minimizer of the planar cotangent stiffness matrix. Right:
The virtual vertex position x f is obtained by multiplying the origi-
nal vertices with the discrete harmonic weights of the projection.

non-planar polygons, however, the trace minimizer and the area
minimizer do in general not coincide, leading to a discontinuous
energy when slightly deviating from a planar configuration.

We suggest an alternative approach that is able to retain linear
precision: Given a non-planar polygon f , we consider its orthog-
onal planar projection with maximum surface area, as proposed by
Alexa and Wardetzky [AW11]. To this end we project the polygon
vertices xi along the polygon’s normal n f , which itself is defined in
terms of the vector area a f :

a f =
1
2 ∑

vi∈ f
(xi ×xi+1) , n f =

a f∥∥a f
∥∥ , x̂i = xi −n f nT

f xi. (39)

For the planar configuration (x̂1, . . . , x̂n) we minimize the trace of
the stiffness matrix with respect to x̂ f as described above. The re-
sulting discrete harmonic weights ŵ f are then used to define the
virtual point for the original, non-planar polygon as x f := ∑ j ŵ j x j.

For non-planar polygons that are still relatively close to a planar
configuration, the virtual vertex will only slightly deviate from the
trace minimizer of the orthogonal projection, as illustrated in Fig-
ure 2. This approach, therefore, avoids the discontinuity between
the trace minimizer and the area minimizer. However, as the poly-
gons become increasingly distorted, the results from this approach
may become less favorable as the positions of the original and pro-
jected vertices increasingly differ. To further stabilize our approach,
we integrate the fallback of comparing the trace of the optimized lo-
cal polygon stiffness matrix to that of the original method. If ours is
higher, we use the original point and weights instead. However, this
is only necessary if the orthogonal projection of the polygon does
not satisfy our initial assumption of being star-shaped, and almost
never occurred in our experiments.

Although our energy minimizing requires an iterative approach, the
implementation of is quite straightforward. Using the maximum or-
thogonal projection, we can express everything in an intrinsic 2D
coordinate system, making the 2 × 2 Newton solver converge in
just a few steps. The gradients and Hessian of Equation (34) can be
derived analytically [Cra23], as well as the Hessian’s eigenvalues
required for the projection step.

Figure 3: In a mixed polygonal mesh (left) we also incorporate vir-
tual vertices in the one-ring (center) whereas other methods often
only consider real vertices (right) [Knu00, GS04, VAGW08].

7. Polygon Mesh Smoothing

In the previous sections we explored the intricate relationship be-
tween virtual vertex positions, affine prolongation weights, and the
eigenvalues of the polygon Laplacian. We established that reducing
the trace of the stiffness matrix improves the numerical quality of
the Laplacian. So far, however, we have only focused on the degrees
of freedom of the discrete Laplace operator itself, not on the “real”
non-virtual vertices of the polygon mesh. If we also take these into
account when optimizing the trace of the stiffness matrix, we can
improve the numerical conditioning much further.

Consider a polygon mesh M = (V,F) with m vertices x1, . . . ,xm
and a virtual triangulation M△ = (V△,T ) generated by inserting a
virtual vertex into each polygonal face. Following the insights from
Sections 5 and 6, we want to optimize the trace of the cotan Lapla-
cian on the virtual triangulation T with respect to the positions of
the polygon vertices vi ∈ V , as shown in Figure 3, center. The trace
of the global cotan stiffness matrix can be formulated as the energy

E(x1, . . . ,xm) = ∑
t∈T

∑
v j∈t

cot(θ j), (40)

which sums up local cotangent components of the corner angles θ j
at the vertices v j within all virtual triangles t ∈ T . We minimize
this energy in a Newton-like manner, but decouple the relationship
of real and virtual vertices in an alternating optimization scheme,
such that each Newton iteration has these two steps:

1. Minimize trace (as in Equation (40)) with respect to all real ver-
tex positions x1, . . . ,xm, while keeping (the affine weights of)
virtual vertices fixed.

2. For each face f , minimize trace (as in Equation (34)) with re-
spect to virtual vertex positions x f and weights w f , while keep-
ing the real vertices fixed.

This formulation not only simplifies the implementation, it also in-
creases the robustness of the numerical optimization. We imple-
ment the smoothing (Step 1) using TinyAD [SBB∗22].

When optimizing polygon meshes embedded in R3, we have to re-
strict vertex movement to the mesh surface to prevent deviation of
the optimized mesh from the original geometry. This is typically
done by restricting vertex movement to their tangent planes and/or
re-projecting vertices to the original mesh after each iteration. For
technical models with sharp features, however, this will not accu-
rately preserve feature edges and corners.

We propose to instead adapt the quadric error metric [GH97] to
our setting and to directly incorporate it into the optimization. At
initialization time, each vertex vi is assigned a 4×4 quadric Qi built
by summing up the quadrics of vi’s incident faces f . As proposed
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Source

κ: 3799

τ = 0

κ: 95

τ = 105

κ: 122
Figure 4: Without constraints, surface meshes may get disfigured
(center). Due to the quadrics energy, vertices move only on the sur-
face and sharp features are preserved automatically (right). The
condition number κ of the polygon stiffness matrix S7 significantly
improves on our smoothed tessellation compared to the input mesh.

by Garland and Heckbert [GH97], the face quadrics are constructed
from area-weighted normal vectors, i.e., from the vector areas a f .
To optimize the trace of the stiffness matrix while keeping vertices
on the surface and on the features, we minimize the energy

E(x1, . . . ,xm) = ∑
t∈T

∑
v j∈t

cot(θ j)+ τ ∑
v j∈V

Q j
(
x j
)
, (41)

where

Q(x) = (xT,1)Q
(

x
1

)
(42)

denotes the quadric error of vertex position x with respect to the
quadric Q. As the τ parameter can be adjusted to fine-tune the opti-
mization process, it is important to note that the sum of cotan values
often tend to become relatively large. Consequently, to effectively
balance the influence of cotan sums and quadric errors, higher τ
values perform better and we used τ = 105 for all results. While
the quadrics could be updated after each Newton iteration, we typ-
ically keep them fixed to restrict the mesh optimization to rather
local modifications.

Figure 4 compares the results of unconstrained (τ = 0) and quadric-
constrained (τ = 105) optimization. While in the unconstrained
case a lower condition number κ is achieved, this comes at the
price of an unacceptable deviation from the original shape. Fig-
ure 5 compares to the polygon mesh smoothing of Garimella et
al. [GS04]. Their energy formulation for the apex vertex has mul-
tiple equivalent minima on the lateral sides of the pyramid, which
crumples down the pyramid in one iteration and would eventually
flatten it completely. Our energy is minimal at the apex itself due
to the symmetry of the constellation, thus the vertex is not moved
(even without quadric constraints).

Figure 5: Results of Garimella [GS04] (left) and ours (right). As
highlighted, their energy function has multiple equivalent minima
for the apex vertex on all four sides, thus crumples the pyramid,
whereas ours remains straight as the minimum is exactly at the top.

8. Results and Discussion

In this section we present experiments, comprehensive compar-
isons, and discussion of the results, highlighting the effectiveness
of our approach on mixed polygon meshes.

8.1. Optimized Polygon Laplacian

We analyze the performance of our optimized polygon Laplacian
in a set of computer graphics applications. We compare our results
to those obtained using several other state-of-the-art operators. Our
comparison includes the original linear virtual refinement method
by Bunge et al. [BHKB20], as well as the DEC operators presented
by Alexa and Wardetzky [AW11] and de Goes et al. [dGBD20],
along with the FV Diamond Laplacian by Bunge et al. [BBA21].
We evaluate two choices for the respective stabilization parameter λ
of the DEC operators. One option is the suggested hyper-parameter
from the original paper, and the other is the parameter that yielded
the best results in most of the test cases. For Alexa and Wardetzky,
this corresponds to λ = 2 (suggested) and λ = 0.5 (optimal). In the
case of de Goes et al., we consider λ = 1 (suggested) and λ = 0.1
(optimal). The results vary depending on the selected test mesh or
application, suggesting that alternative hyper-parameter configura-
tions tailored to specific mesh types or applications could further
improve the results for the respective DEC operator. The implemen-
tation of the Laplacian operators and test applications is based on
the source code for Bunge et al.’s survey paper [BB23]. Although
we provide a concise summary of the test methods presented, we
encourage readers to consult the survey for more details. Figure 16
illustrates a selection of the test meshes used in our evaluation.

Poisson Equation The Poisson equation, given by −∆u = f , is
often used to analyze the convergence rate of a discrete Laplacian.
On a polygon mesh M with m vertices, we consider the discretized
Poisson equation for the Laplacian matrix L =−M−1S ∈ Rm×m

−L ·u = f ⇔ S ·u = M · f (43)

with Dirichlet boundary conditions. We solve for the discretization
of the analytically calculated Laplacian of the 2D Franke test func-
tion [Fra79, BB23], sampled at the vertices. The convergence plots
in Figure 6 show the L2 errors rates on different planar tessellations.
Our method consistently maintains low error rates and outperforms
all other operators on several meshes. However, the accuracy of
more regular shapes, like the Voronoi mesh, does not significantly
differ from that of the original method. The operator of de Goes
et al. [dGBD20] outperforms our method on two tessellations for
the hyper-parameter λ = 1. However, on the other tessellations this
parameter leads to less favorable results, while our method remains
one of the most accurate.

Spherical Harmonics The analytic eigenfunctions of the smooth
Laplacian on the unit sphere S2 are referred to as the spherical har-
monics Y m

l : S2 → R with eigenvalues µ =−l(l+1) [PTVF07]. To
compare different Laplacians on non-planar meshes, we discretize
Y 2

3 with eigenvalue µ =−12 to the vector y2
3 ∈ Rm on polygon tes-

sellations of the unit sphere. The vector can then be used to solve
for f ∈ Rm according to the Poisson equation [BB23]. Figure 7
shows the obtained results. As for the planar meshes, our opera-
tor is able to outperform the other operators on several meshes. In
the other cases, it is either on par with the optimized version of
Alexa and Wardetzky’s operator or outperforms the DEC Lapla-
cians. The Diamond operator is able to yield the lowest error on
Voronoi spheres.
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Figure 6: Poisson solve for the 2D Franke test function in log-log scale. The errors were evaluated on different polygon tessellations of the
unit plane. x-axis: inverse mean edge length, y-axis: L2 error.
Legend: [AW11] λ = 2, 0.5, [dGBD20] λ = 1, 0.1. [BBA21] , [BHKB20] default, ours.
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Figure 7: Poisson solve for the spherical harmonic function Y 2
3 in log-log scale on different tessellations of the unit sphere. x-axis: inverse

mean edge length, y-axis: L2 error.
Legend: [AW11] λ = 2, 0.5, [dGBD20] λ = 1, 0.1. [BBA21] , [BHKB20] default, ours.

Geodesics in Heat The geodesic distance can be evaluated on
polygon meshes and requires, besides the Laplacian, discrete di-
vergence and gradient operators. We use the geodesics in heat
method by Crane et al. [CWW13] to calculate the geodesic dis-
tances between one vertex vi and all other vertices of the mesh.
As suggested by de Goes et al. [dGBD20, dGDMD16] we use the
squared norm of the longest face diagonal as time-step for the in-
volved diffusion step. In order to provide a less biased evalua-
tion, we computed the L2 errors for 162 (plane) and 83 (spheres)
uniformly sampled points and then report the mean of these er-
rors. Additionally, we compare the results of the introduced poly-
gon Laplacians to a triangle approach. We refine the mesh by tri-
angulating polygons to minimize squared triangle areas [Lie03]
and employ the Laplacian based on the intrinsic Delaunay trian-
gulation [BS07], using the geodesic in heat implementation of li-

bigl [JP∗18]. The results are presented in Figure 8. Comparing
the polygon Laplacians, our method and the two DEC operators
with optimized hyper-parameters generally perform best, except
in the case of the Voronoi Plane, where the Laplacians obtained
with recommended DEC parameters outperform our method. How-
ever, these Laplacians had higher errors on other tessellations.
The Diamond Laplacian also achieves competitive accuracy, es-
pecially for spherical meshes. All polygon approaches are bested
by the intrinsic Delaunay approach on planar meshes but remain
competitive on spherical tessellations. Comparing our approach to
the original linear virtual refinement method, we found that our
method consistently improves the accuracy. However, this improve-
ment is more pronounced on planar meshes than on unit spheres.
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Figure 8: Geodesics in heat method in log-log scale for planes (top) and spheres (bottom). x-axis: inverse mean edge length, y-axis: L2 error.
Legend: [AW11] λ = 2, 0.5, [dGBD20] λ = 1, 0.1. [BBA21] , [BHKB20] default, ours, Intrinsic Delaunay.
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Figure 9: The condition number κ(S7) of the respective polygon stiffness matrices on planar (top) and spherical (bottom) polygon meshes.
x-axis: inverse mean edge length, y-axis: Condition Number.
Legend: [AW11] λ = 2, 0.5, [dGBD20] λ = 1, 0.1. [BBA21] , [BHKB20] default, ours.
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Figure 10: The condition number κ(L7) of the respective point-wise polygon Laplacians on planar (top) and spherical (bottom) polygon
meshes. x-axis: inverse mean edge length, y-axis: Condition Number.
Legend: [AW11] λ = 2, 0.5, [dGBD20] λ = 1, 0.1. [BBA21] , [BHKB20] default, ours.

Numerical Stability We evaluate the numerical stability of our
proposed polygon Laplacian by analyzing the condition number of
its involved components, defined in Equation (15). Note that the
smallest eigenvalue of the stiffness and Laplacian matrices are zero
due to their one-dimensional kernel, so we consider the minimal
nonzero eigenvalue. Figure 9 displays the condition numbers of the
respective stiffness matrices of the different Laplace operators on
the previously presented test meshes. Figure 10 shows the condi-
tion numbers of the strong form of the respective Laplacians, which
includes the individual mass matrices. Further examples regarding
the condition number of our approach and the original linear vir-
tual refinement method can be found in Figure 15. Our approach
consistently improves the conditioning of the polygon stiffness ma-
trix compared to the original method. However, consistent with the
survey by Bunge et al. [BB23], we observe that the DEC operators
yield lower condition numbers for lower hyper-parameter. An im-
provement in the conditioning of the strong form

(
M7)−1 S7 of the

Laplacian cannot be guaranteed. While often observed, as shown
in Figure 10, our optimization primarily focuses on angle quality.

This can lead to smaller virtual triangles, for example, when the
trace minimizer avoids acute angles at the virtual vertex by moving
it closer to a polygon edge. These smaller triangle areas affect both
the smallest eigenvalue of the stiffness matrix S7 and the eigenval-
ues of the mass matrix M7, which can lead to potentially increased
condition numbers of the combined matrix

(
M7)−1 S7. Since we

are using the lumped version of the mass matrix, the individual
eigenvalues of M7 are the vertex areas on the diagonal, i.e., the
sum of incident faces’ areas.

The conditioning of the stiffness matrix is closely related to
the convergence rate of iterative solvers like conjugate gradients
[She02], meaning that well-conditioned matrices should cause a
faster convergence. We verify this correlation by solving the Pois-
son equations mentioned above with the conjugate gradient method
(without preconditioning) and compare the number of iterations un-
til convergence with the condition numbers of the global stiffness
matrices. We observed that when condition numbers improved by
10–50 % with the help of our new method in comparison to Bunge
et al. [BHKB20], the number of iterations decreased by 8–15 %.
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8.2. Polygon Mesh Smoothing

Figure 12 illustrates a comparison of smoothing results on a mixed
polygon mesh, generated with Smart Laplacian and GETMe (both
by Vartziotis et al. [VAGW08]), and our method. GETMe is consid-
ered a state-of-the-art method in mesh smoothing [Lo14,SBMS23],
but the official implementation currently only supports 2D input.
Further are the boundary vertices fixed during the optimization. Our
approach easily allows for the integration of boundary adherence
conditions, such that these vertices are allowed to move as well.
For the optimization this additional degree of freedom can further
improve the polygon constellations, shown by the condition num-
bers of our polygon stiffness matrix κ(S7), which we refer to as κ.

In Figure 13 we compare our methods to simple explicit Lapla-
cian smoothing and the methods of Knupp [Knu00] and Garimella
et al. [GS04]. While all of the other methods were also intended
for polygons, the energy term for a respective vertex only incor-
porates its direct one-ring neighbors and neglects the rest of the
polygon (see Figure 3). Especially on challenging inputs, featuring
non-convex polygons, this often breaks the optimization for these
methods. Therefore, the results for Knupp and Garimella had to be
generated with a preceding step to repair non-convex faces.

A simpler approach on smoothing could be to apply established
triangle smoothing algorithms on the virtual triangulation and un-
refine the mesh afterwards. However, common techniques for tri-
angles, such as the tangential smoothing approach by Dunyach et
al. [DVBB13], can result in scenarios where vertices slide over
sharp edges or high curvature features, as shown in Figure 11 (cen-
ter). While the feature is preserved in the smoothed triangle mesh,
unrefining it (removing the inserted vertices) leaves us with bent
non-planar polygons. Increased non-planarity and ill-shaped poly-
gons may also negatively impact the mesh conditioning, as shown
with the condition numbers given in the bottom row of Figure 11.

In Figure 15, we present examples of our procedure’s input-output
pairs, complemented by bar plots that offer comparisons with al-
ternative smoothing strategies. These comparisons encompass both
the outcomes of the optimization processes and the condition num-
bers of the stiffness matrices of the original linear virtual refinement
method [BHKB20] and our improved version. Notably, our mesh
improvement strategy is meticulously tailored to complement our

κ: 1304 κ: 1069 κ: 1049

κ: 16467 κ: 20475 κ: 14591
Figure 11: The polygonal input mesh on the left and our smoothed
result on the right. Applying tangential smoothing [DVBB13] on
the virtual triangulation may lead to bent polygons (center).

Level κ(S7) κ(L7) L2 error Type

Vo
ro

no
i2

a 10312 12068 0.00207291
b 2084 2432 0.00213434 Plane
c 226 358 0.00201959
a 4284 5776 0.02049460
b 782 1006 0.02210920 Sphere
c 187 323 0.01565610

Vo
ro

no
i3

a 43091 53099 0.00058499
b 13893 18576 0.00058063 Plane
c 898 1806 0.00054982
a 25877 55648 0.01557880
b 13372 27876 0.01732200 Sphere
c 317 350 0.00781903

Table 1: We analyze condition numbers and accuracy on two
Voronoi planes and spheres (see Figure 16), respectively. Num-
bers are given on the unaltered mesh for the (a) virtual refine-
ment method [BHKB20], (b) our new Laplacian and (c) our Lapla-
cian on the optimized tessellation. Our optimization yields improve-
ments in both condition numbers and accuracy.

enhanced Laplace operator, resulting in substantial improvements
when applied together.

In Table 1, we show that in addition to improved condition numbers
of the weak and strong form of the polygon Laplacian, the accuracy
of Poisson solves on planar and spherical meshes is enhanced on
the optimized mesh compared to the original tessellation.

8.3. Timings

With our current implementation being based on the code by Bunge
et al. [BB23] we report the following performance: As elaborated
in Section 6.3, the optimal position for our proposed virtual vertex
is determined via a polygon projection and optimizing for a trace
minimizing point. Compared to the original method [BHKB20],
which solves for a squared area minimizer and least norm weights,
our matrix assembly is on average about 10 % slower. Note how-
ever, that assembly costs are negligible (in the range of millisec-
onds) compared to solving times (several seconds), which stay the
same. The time for the smoothing iteration strongly depends on the
conditioning and size of the given input mesh. With our single-
core implementation (using TinyAD [SBB∗22]) the input meshes
used in our tests, like Voronoi spheres, the horse, fertility or fan-
disk terminate with less than 50 iterations in 2 to 10 seconds. For
the rocker-arm (Figure 11, bottom), 709 iterations finished in 1400
seconds. However, this can be improved by either adjusting the ter-
mination criterion, as the most improvement is achieved within the
first few steps, or a dedicated parallelized implementation.

8.4. Limitations

While our method can handle non-planar and non-convex polygons
and generally improves the stiffness matrix’s accuracy and con-
dition number, there are some limitations. First, the shape of the
polygons is limited to those that result in star-shaped faces after the
planar projection to avoid negative triangle areas. Challenging con-
figurations are extremely disfigured saddle-shaped polygons that,
when projected, result in tangled and self-intersecting shapes. This
is, however, more of a theoretical issue as we have yet to find
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Figure 12: 2D smoothing results on a mixed polygon mesh using Smart Laplace [VAGW08], GETMe [VAGW08], and our method. Further
included is a version (⊥) where boundary vertices are also allowed to move along the boundary (not possible with GETMe).

Source
κ: 5489

Laplace
κ: 4473
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Figure 13: 2D manifold smoothing results on a mixed polygon mesh using Laplace smoothing, Knupp’s [Knu00], Garimella’s [GS04], and
our method; all using surface Quadrics, respectively. GETMe is not included as the official implementation only supports 2D input.

such shapes in the wild, and the example in Figure 14 is manu-
ally constructed. Secondly, negative discrete harmonic coordinates
can cause negative mass matrix entries on ill-conditioned meshes.
Notably, such occurrences are infrequent; we observed them only
on a single face. While relatively large, this particular polygon con-
tained an almost degenerating edge. The negative weight associated
with the virtual vertex overpowered the area of the existing node,
resulting in a negative entry despite the absence of flipped triangles.
The mass matrix, and consequently the strong form of the Lapla-
cian, are then no longer positive/negative (semi-)definite.

Figure 14: Strongly disfigured polygons, as the saddle shape on
the left, may induce a max-area projection (right) that is self-
intersecting, thus non-star-shaped.

9. Conclusion

This paper presents an approach that optimizes the numerical
quality and accuracy of the polygon Laplacian based on the
linear virtual refinement method by Bunge et al. [BHKB20]. We
show that minimizing the trace of the polygon stiffness matrix
establishes a direct link to the geometry of the polygon through
the virtual triangle fan. This connection allows us to leverage
existing knowledge of the finite element method regarding triangle
shapes to find an optimized placement of the virtual vertex.
Based on these insights, we present a smoothing algorithm that
can further improve polygon meshes with regard to the trace

of the polygon stiffness matrix. The combination of techniques
offers a valuable tool set for improving the overall perfor-
mance of numerical simulations on complex surface geometries.

The experiments show consistent improvement in both accuracy
and condition numbers for the virtual refinement method. Com-
pared to other existing operators, our methods offers an approach
that consistently yields good results, whereas the other methods re-
quire tuning the available parameter to adapt to the task at hand.

While our current approach yields promising results on surface
meshes, numerous avenues exist for future exploration and im-
provement. One direction for future research involves extending
our findings to volume meshes and examining whether similar con-
nections can be established. Concerning our smoothing approach, a
promising addition would be to incorporate constraints into the en-
ergy function such that the optimization process preserves specific
anisotropic mesh properties. We also aim at extending our analysis
to other operators, such as the diamond Laplacian [BBA21] or the
Discrete Exterior Calculus (DEC) methods [AW11, dGBD20].
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Figure 16: The different mesh types used in our evaluation (Figures 7, 8 and 9). Shown here are resolutions 2 and 3 of the five levels used.
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