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Abstract

Realistic full-body avatars play a key role in representing users in virtual environments, where they have been shown to

considerably improve body ownership and presence. Driven by the growing demand for realistic virtual humans, extensive

research on scanning-based avatar reconstruction has been conducted in recent years. Most methods, however, require complex

hardware, such as expensive camera rigs and/or controlled capture setups, thereby restricting avatar generation to specialized

labs. We propose WILDAVATARS, an approach that empowers even non-experts without access to complex equipment to

capture realistic avatars in the wild. Our avatar generation is based on an easy-to-use smartphone application that guides the

user through the scanning process and uploads the captured data to a server, which in a fully automatic manner reconstructs

a photorealistic avatar that is ready to be downloaded into a VR application. To increase the availability and foster the use of

realistic virtual humans in VR applications we will make WILDAVATARS publicly available for research purposes.

1



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 202X 1

WILDAVATARS: Smartphone-Based Reconstruction

of Full-Body Avatars in the Wild

Timo Menzel†, Erik Wolf†, Stephan Wenninger, Niklas Spinczyk, Lena Holderrieth

Ulrich Schwanecke, Marc Erich Latoschik, Mario Botsch

Abstract—Realistic full-body avatars play a key role in rep-
resenting users in virtual environments, where they have been
shown to considerably improve body ownership and presence.
Driven by the growing demand for realistic virtual humans,
extensive research on scanning-based avatar reconstruction has
been conducted in recent years. Most methods, however, require
complex hardware, such as expensive camera rigs and/or con-
trolled capture setups, thereby restricting avatar generation to
specialized labs. We propose WILDAVATARS, an approach that
empowers even non-experts without access to complex equipment
to capture realistic avatars in the wild. Our avatar generation
is based on an easy-to-use smartphone application that guides
the user through the scanning process and uploads the captured
data to a server, which in a fully automatic manner reconstructs
a photorealistic avatar that is ready to be downloaded into a
VR application. To increase the availability and foster the use
of realistic virtual humans in VR applications we will make
WILDAVATARS publicly available for research purposes.

Index Terms—Virtual reality, virtual human, avatar, agent,
embodiment, virtual body ownership, agency, self-location, body
image, body weight perception

I. INTRODUCTION

Avatars are digital representations of users that can be

dynamically rendered in real-time within virtual environments

to reflect their users’ behavior [1]. In our research, we specify

the term avatar further to refer to humanoid representations

that vary from stylized to realistically reconstructed 3D mod-

els. Such avatars may appear generic, lacking distinctive or

individual features, or they can be personalized to resemble

the appearance of their respective user closely. With the recent
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surge of virtual reality (VR) research [2] and the increasing

availability of mature head-mounted displays (HMDs) [3],

avatars have become more and more important as faithful self-

representations of users in almost countless scenarios. These

scenarios include metaverse-like social VR environments [4],

[5], [6], [7] or VR applications for supporting mental health

[8], [9], where maintaining the users’ identity and conveying

realistic emotions are crucial for authentic interactions and a

sophisticated user experience (UX). Prior work has shown that

realistically personalized avatars, which can look deceptively

similar to the user, are superior for the outlined scenarios by

strengthening the users’ sense of presence and embodiment or

increasing their self-identification with the avatar [10], [11],

[12], [13].

Therefore, extensive research on the generation of realistic

avatars has been conducted in recent years, aiming to realize

convincing and plausible virtual representations. While some

approaches focus on the full-body reconstruction of humans

[14], [15], [16], [17], [18], others only focus on certain body

parts [19], [20], [21], [22], [23], [24]. However, most of these

approaches are subject to considerable limitations, including

the need for expensive hardware or complicated scan routines,

which make them inaccessible to non-experts, place restric-

tions on the person to reconstruct or the scanning environment

that reduces potential use-cases, or long computation times that

hinder the immediate use of avatars in virtual environments.

To simplify the generation of realistically personalized

avatars and make them accessible to a broader audience, we

present WILDAVATARS. This user-centered system consists

of a customized smartphone application for image capturing

and an accompanying server for avatar reconstruction. Our

smartphone application visually guides the user through the

scanning process, making it easy to follow the instructions.

The captured images are uploaded to a processing server

to create a high-quality avatar of the scanned person. Us-

ing photogrammetry, landmark detection, and an automatic

template-fitting approach, we generate realistic, personalized

full-body avatars in less than 20 minutes. In addition, we

present solutions to minimize the restrictions on the scanning

location and further enable non-professionals to create virtual

people of themselves using only a smartphone.

To evaluate the quality of our proposed system, we con-

ducted a user study following a multi-method approach to

assess both the smartphone app’s usability and the quality

of the created avatars. To this end, we arranged participants

into dyads, where one participant used the smartphone app

to create an avatar of another participant. Afterwards, the
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participant who carried out the scan assessed the smartphone

app’s usability as part of qualitative interviews and qualitative

benchmarks, while the scanned participant reported on the

experience of being scanned before evaluating the generated

avatar in VR in comparison to avatars originating from an

expert system and to gender- and ethnicity-matched generic

avatars.

II. RELATED WORK

Various approaches for creating realistic avatars have been

proposed. There are differences in the type of capture device

and input data or in the representation of the resulting avatars.

A. Input Data

Some of the methods employ expensive camera rigs to

capture accurate and high-quality images as input for re-

constructing humans [11], [14], [19], [25], [26], [27], [28].

These methods can provide impressive results but are usually

unsuitable for non-experts due to the high cost of the scanning

and computation hardware or the complex recording process

and operation.

There are approaches to minimize hardware costs by using

monocular videos as input [15], [16], [17], [18], [29], [30],

[31], [32]. These methods reduce the number of required

cameras to just one, which increases the accessibility and

affordability for non-experts. On the one hand, relying on

videos is a good possibility to record every side of a subject

for a convincing reconstruction. On the other hand, video data

from consumer devices usually is more compressed than image

data and contains more blurring. In consequence, compromises

in geometric accuracy and texture resolution are unavoidable,

as we show in Section III-A1.

Cao et al. [33] and Ichim et al. [20] reconstruct avatars

using smartphones. In both methods, the user captures several

images from different perspectives. While Ichim et al. compute

an avatar in under an hour, Cao et al. need up to six

hours for the computation. However, both approaches only

generate virtual head avatars, which restricts the applicability

in different VR scenarios.

Recent developments try to use just one image as input

for the reconstruction [22], [23], [34]. These approaches use

prior knowledge to fill in the missing information. However,

although learning-based methods can reduce the impact of this

missing data and provide plausible results, the fundamentally

ill-posed nature of the problem leads to less accurate results

than methods that use more input.

To address the mentioned shortcomings, our approach also

uses a single camera instead of a multi-camera rig but captures

consecutive images instead of videos with the aim of reducing

the amount of blurring and artifacts in the captured images.

Since our proposed system is designed to be available for

everybody, we use a commodity smartphone instead of a

special camera rig. Furthermore, our visual guidance and

timer-based capturing process help the user to easily capture

the necessary images for our pipeline while preserving the

conveniences of video capture.

B. Representations of Avatars

Avatars can be represented in various ways. Many methods

use explicit mesh-based representations to reconstruct realistic

avatars [14], [16], [17], [18], [29]. These methods usually

require a pre-defined rigged template model whose mesh is

deformed to closely match the shape of the captured person.

The advantage of such template-based approaches is that the

resulting avatars can be used in existing graphics pipelines and

game engines (e.g., Unity or Unreal) and are, therefore, suit-

able for current AR/VR applications. However, these methods

restrict the animation possibilities since clothing and hair are

often represented by the same surface and cannot be simulated

in a physically correct way.

In contrast to explicit representations, implicit represen-

tations [35], [36], [37], [38] allow to model fine details

since they are not restricted by a fixed topology. Neural

Radiance Fields (NeRF) [15], [30], [39], [40], [41], [42],

[43] are therefore better suited for animating clothing and

hair due to the fine details in color and shape. Recently,

Gaussian Splatting-based methods [44], [45], [46], [47], [48]

have become popular. Starting from a point cloud or a mesh,

these methods use a mixture of Gaussians to represent realistic

avatars. Nonetheless, computing these implicit representations

often is a time-consuming task (computation times between

two hours and ten days for [31], [43], [44], [45], [46], [48]) and

the more expensive rendering leads to lower frame rates (43

fps [31], 0.025 fps [38], 0.05 fps [41], 0.2 fps [42], 25 fps [43]

and 10 fps [47]) depending on the complexity of the rendered

scene, e.g., the number of avatars in social VR scenarios. This

makes those approaches less useful for VR applications where

high frame rates are crucial to prevent motion sickness [49].

C. Avatars for Self-Representation in Virtual Reality

The egocentric embodiment of avatars for self-

representation in VR [50] can have a considerably positive

impact on the UX of virtual environments [51]. These effects

include the enhancement of VR’s psychometric key features,

such as the sense of presence [10], [52], [53], or intensifying

emotional responses to virtual content [10], [54]. Other

advantages may include improved spatial perception [55],

[56], reduced cognitive load [57] or higher performance and

accuracy [58], [59] when performing tasks in VR.

A crucial aspect in evaluating the effectiveness of avatar

embodiment is the sense of embodiment (SoE), consisting of

the feeling of truly owning (ownership), controlling (agency),

and being located within (self-location) a virtual body in a

virtual environment [60], [61]. Prior work has shown that

the realistic personalization of avatars can increase the SoE

towards the avatar [10], [62], [11] and thereby contribute to

an overall plausible VR experience [63].

Having a realistically personalized body becomes particu-

larly valuable when it helps maintain the user’s identity, as

beneficial in social VR experiences [5], [6], [7] or applications

supporting mental health [8], [9], [64]. Prior work has also

shown that self-related cues through both avatar embodiment

and personalization significantly increase self-identification

with the avatar [12], potentially maintaining a more accurate
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self-perception in VR. However, a realistic personalization of

avatars might also impact UX negatively, as their human-like

realism in connection with their high affinity to the user can

potentially invoke Uncanny Valley effects, leading to negative

emotional responses like eeriness towards the avatars [65],

[66]. Therefore, we evaluate our avatars in relation to the

here presented psychometric measures to preclude significant

negative effects and ensure a positive UX when being used

for self-representation in VR.

III. TECHNICAL SYSTEM

This section describes our proposed method and then shows

results, including quantitative and qualitative comparisons with

two state-of-the-art methods and our ablation studies.

A. Method

Our proposed approach is inspired by the smartphone-based

avatar reconstruction of Wenninger et al. [18]. They propose to

record a body and a head scan video, from which they extract

individual video frames. These video frames are then used to

generate two dense point clouds using Agisoft Metashape [67],

a widely used commercial photogrammetry software. After

that, OpenPose [68] is used to automatically detect landmarks

that serve as input together with the corresponding head and

body point clouds for a template fitting approach that uses

non-rigid registration to deform a template model separately

to the head or body of the scanned person. The resulting

head and body mesh are then combined. Subsequently, the

resulting geometry is textured using a graph-cut algorithm to

map the colors of the video frames to the corresponding part

in the mesh. While we follow a similar approach to generate

point clouds from visual input data and subsequently apply

template fitting to personalize an avatar template, we support

the data acquisition using a custom smartphone application

(Section III-A1) and add a preprocessing step (Section III-A2)

to reduce prior restrictions on scanning locations. Instead of

fitting in two separate steps, we present a method to register

head and body point clouds, which allows us to perform a

simultaneous fitting of both parts (Section III-A3). Figure 1

shows an overview of our pipeline.

1) Data Acquisition: Analogously to Wenninger et al. [18],

we record people by performing a full-body scan in A-pose

and a close-up head scan using a smartphone (see Figure 1,

top left). However, similar to Ichim et al. [20], we capture

individual images (105 images at 3024× 4032 px resolution)

during the scanning process instead of extracting individual

frames from a video stream. Video captured with most current

smartphone cameras is compressed using H.264 or H.265

compression algorithms. These compression algorithms are

designed to view each frame only for a fraction of a second.

This allows for 50% storage savings at the cost of various

compression artifacts [69]. Furthermore, video compression

uses inter-frame compression, i.e., utilizing the similarity

of consecutive frames. H.264 and H.265 compression uses

motion detection to compress movement between frames. For

this, the image is grouped into regions of 4× 4 px to 16× 16
px, and their movement between consecutive frames is stored

[69]. While this allows for very efficient video compression,

these blocks are typically not contained in the next frame

exactly, further degrading image quality. This increase in

image resolution and quality leads to more accurate point

clouds (see Figure 2) and, therefore, allows more detailed

textures and finer details in the final avatar mesh.

To reduce user-induced errors in the scan results and make

the creation of realistic avatars available to non-expert users as

well, we developed a custom application for iOS that features

(i) timer-based image capture, (ii) visual guidance through the

scanning process, and (iii) automatic upload to our processing

server. Our application captures images at a rate of one image

per second. In addition, we display a green overlay during

the scanning process, which rotates to show the user the next

camera position (see Figure 3). Arrows below or next to the

overlay further indicate the movement direction. The user is

informed via a dialog when the scan is complete (see Figure 3,

right column). The entire scan procedure can be seen in the

accompanying video.

2) Data Preprocessing: We use computationally expensive

tasks like image segmentation and photogrammetry to create

an avatar from the captured images. To avoid relying on

Visually Guided

Scanning

User

iPhone

User PC

Final Avatar

Upload

Download

Server

Segmentation

Photogrammetry

Texture Transfer

Offscreen Rendering

Landmark Detection

Template Fitting

Fig. 1. Our avatar fitting pipeline. A user scans a subject with our custom
smartphone application. After scanning, the images are uploaded to our
processing server, where we automatically reconstruct a realistic avatar, which
is ready to be downloaded into any VR application. The entire reconstruction
pipeline takes about 22 minutes.

Fig. 2. Reconstructed point clouds from video frames (left) and images (right).
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Fig. 3. Scanning procedure of our iOS avatar scanning app. Top left: Initial overlay before starting the body scan; Top middle: Overlay during the body scan
with a direction arrow; Top right: End of body scan alert; Bottom left: Initial overlay before starting the head scan; Bottom middle: Overlay during the head
scan with direction arrow(s); Bottom right: End of head scan alert.

the client’s computational resources, we upload the captured

images to a server for reconstruction. After finishing the

reconstruction, the server notifies the user via email, including

a download link for the VR-ready avatar. In the following, we

describe the different steps of the reconstruction pipeline on

our server.

Background Segmentation: Scanning people using a

smartphone in uncontrolled outdoor settings presents a press-

ing issue. The presence of moving objects in the environment,

such as driving cars or the leaves of trees in the wind, signif-

icantly impacts the accuracy of the results. These movements

in the background impact the photogrammetry step in our

pipeline by violating the photogrammetry assumption, i.e.,

scanning rigid non-moving objects, leading to false extrin-

sic camera calibrations. Segmenting the input images into

foreground and background simplifies the problem for the

photogrammetry algorithm since features and movements in

the background can no longer affect the feature extraction.

Therefore, the photogrammetry algorithm aligns the camera

positions only relative to the scanned subject. Furthermore, the

segmentation significantly reduces the number of features that

must be matched against each other. Besides, the background

of the images is excluded from the reconstructed point cloud

and, thus, removes noise (see Figure 4, top). While slight

movements in the background would often result in duplicate

point clouds, by only aligning the cameras relative to the

subject, the amount of noise and duplicate parts is reduced

(see Figure 4, bottom).

We compared the DeepLabV3 [70] implementation from

PyTorch with Apple’s person segmentation framework (on

macOS 14.5) [71]. While both methods reliably segmented the

captured person, Apple’s segmentation framework produced

slightly better results in our test cases. Thus, we chose this

Fig. 4. Segmenting the images into foreground and background reduces
noise in reconstructed point clouds. Point clouds without segmenting the input
images (left), point clouds reconstructed from segmented input images (right).

system to create the segmentation masks (see Figure 1 and

Figure 5).

Photogrammetry: The captured images and the generated

binary masks are passed to a photogrammetry software (see

Figure 1, top middle). Wenninger et al. reconstructed point

clouds using Agisoft Metashape [67], a widely used commer-

cial tool for that task. Since we want to make our system
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Fig. 5. Exemplary result of Apple’s person segmentation framework. Input
image (left) and segmentation mask (right).

Fig. 6. Photogrammetry results from Agisoft Metashape (left) and Apple’s
photogrammetry toolkit (right).

publicly available for research purposes as a client-server so-

lution, we cannot use this software due to license restrictions.

Therefore, we decided to use Apple’s photogrammetry toolkit

[72] (on macOS 14.5).

It provides a high-level photogrammetry API that allows

users to specify four different configuration settings. In our

approach, we use the detail setting raw, feature sensitivity

setting high, and sample ordering unordered. Additionally, we

provide segmentation masks, depth data, gravity vectors, and

EXIF data, which improved the photogrammetry results signif-

icantly. The depth data, captured using the smartphone’s depth

sensor (576 px × 768 px), helps to scale the reconstructed

object to the correct world size, and the gravity vectors help

to compute the object’s correct orientation.

Although Metashape offers many more different settings

throughout the photogrammetry pipeline, we can produce

results of similar quality with Apple’s photogrammetry toolkit

using the described settings, as shown in Figure 6.

Landmark Detection: Wenninger et al. [18] automatically

detect landmarks that guide their template fitting approach

and are particularly important to accurately fit the face re-

gion. Using the estimated camera calibration, their approach

automatically detects landmarks in the 2D images and projects

them back onto the computed 3D point cloud. Unfortunately,

we can only retrieve a textured mesh from Apple’s pho-

togrammetry pipeline, while the intrinsic camera calibration is

unavailable as output data. To still be able to detect landmarks

on the photogrammetry result, we instead render the resulting

textured mesh from various camera positions. This allows us

to run standard 2D landmark detection to detect 37 landmarks

(eye contours, the tip of the nose, and mouth features) on the

rendered images and back-project the landmarks onto the pho-

togrammetry result using the information from the rendered

depth buffers. We compared Dlib [73], Apple’s face landmarks

framework [74], and MediaPipe [75]. We use MediaPipe in our

pipeline as it worked best in our test cases.

3) Template Fitting: We perform curvature-adaptive point

sampling on the reconstructed photogrammetry mesh and

then add the back-projected landmarks as individual points to

the resulting point clouds. These point clouds are the input

for a template fitting step, where a statistical, animatable

template model is deformed to match the scanned data. The

implemented template fitting approach follows the method

presented in [18], with some notable differences explained in

the following.

Template: The main mesh of our template model is

defined by a set of N = 23,752 vertices V and their positions

X =
(

x1, . . . ,xN

)

, a skinned rig consisting of 59 joints con-

trolled by joint angles θ ∈ R
179, a 30-dimensional parametric

shape model
(

P,µ
)

consisting of principal component matrix

P and mean µ controlled by shape parameters α, and 52
blendshapes modeled after the ARKit blendshape set [76].

Additionally, the template mesh includes auxiliary meshes

and blendshapes for mouth, teeth, and eyes. The pose of

the template model can be adjusted by using the standard

linear blend skinning [77] equation skin(X ,θ), which takes

unposed vertex positions X and the joint angles θ to compute

posed vertex positions X ′.

Registration: The reconstructed head and body point

clouds are not in the same coordinate system and may have

different scaling due to inaccuracies in the captured depth

data. Therefore, as a first step, we align the head to the body

scan by employing ICP with scaling guided by the previously

computed set of matching landmarks in both point clouds. This

step ensures that the proportions of the head and body are

respected, which is not the case in the approach of Wenninger

et al. [18], as they first fit their template to the body scan and

then register the head scan afterward (see Figure 9).

Our template fitting approach is then implemented as a two-

step energy minimization problem. First, we optimize

• the alignment from point clouds to the template given by

affine transformation composed of rotation R ∈ SO(3),
scaling s ∈ R, and translation t ∈ R

3,

• the pose of the template given by joint angles θ ∈ R
179,

• the coarse shape of the deformable model defined by PCA

parameters α ∈ R
30,

by minimizing the following cost function:

Einit(α,θ,R, s, t) = Efit(α,θ,R, s, t) + Ereg(α) , (1)

where Efit is responsible for fitting the model to the data by

penalizing the weighted squared per-correspondence distances

between the template mesh and the point clouds:

Efit(α,θ,R, s, t) =

1
∑

wc

∑

c∈C

wc ∥ sRpc + t− skinc(Pα+ µ,θ) ∥
2
, (2)

where skinc is the standard linear blend skinning equation

applied to the corresponding point on the template surface
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(expressed via barycentric coordinates), C is a set of cor-

respondences, weighted by per-correspondence weights wc.

It contains both the automatically detected landmarks and

closest point correspondences. We compute the closest point

correspondences from scan to template since this computation

direction provides more accurate fitting [78]. The closest

point on the template mesh is found for every point in the

point clouds, defined by barycentric coordinates for a specific

triangle. Note that this set contains correspondences from head

and body point clouds, i.e., shape and pose are simultaneously

optimized for both point cloud targets. To this end, we exclude

all correspondences between the body point cloud and the

head region of the template model and vice versa. Ereg(α)
is a weighted Tikhonov regularization term that prevents the

shape model from overfitting:

Ereg(α) =
λreg

d
∥Γα ∥

2
, (3)

where d is the dimension of the shape model, Γ =
diag(1/σ1, ..., 1/σd) and σi are the eigenvalues of the PCA

matrix. We minimize Equation (1) by block coordinate de-

scent, i.e., we alternatingly optimize the alignment, pose, and

shape parameters. The alignment is computed in a closed-form

manner [79], the pose is optimized using inverse kinematics

[80], and we optimize the shape parameters subject to the per-

correspondence distances between template mesh and point

clouds are minimized in the least squares sense.

This optimization results in a coarse registration of the

template model, namely the resulting vertex positions X̄ , the

estimated pose parameters θ̄, rotation R, scaling s, translation

t and the shape parameters α. Since the parametric shape

model is not expressive enough to accurately model clothing

or hair, we further refine this coarse registration with a fine-

scale physics-based deformation. Formally, we minimize

Efine(X ) = Efit(X ) + µregEreg

(

X , X̄
)

, (4)

where

Efit(X ) =
1

∑

wc

∑

c∈C

wc

∥

∥pc − skinc

(

X , θ̄
)
∥

∥

2

penalizes the squared per-correspondence distances similar to

Equation (2) and

Ereg

(

X , X̄
)

=
1

∑

e
Ae

∑

e∈E

Ae ∥∆x(e)−Re∆x̄(e) ∥
2

penalizes geometric distortion from the result of the initial

registration by measuring the squared deviation of the per-

edge Laplacian weighted by per-edge areas Ae (see [14], [18]

for details).

Again, we iteratively minimize Equation (4) by block coor-

dinate descent by alternatingly solving for new vertex positions

and per-edge rotations Re. We use the per-correspondence

weights wc to give less influence to correspondences in the

hand region, as it might be unreliably reconstructed in the pho-

togrammetry step, and to gradually decrease the landmarks’

influence. The regularization weight µreg is also gradually

decreased from µreg = 1 to µreg = 10−9. Note that due to

the measures taken to ensure a more reliable photogrammetry

result (Section III-A1 and Section III-A2), we can decrease

the regularization weight further than [18], resulting in more

geometric details in the final reconstruction.

Texture Generation: As mentioned in Section III-A2,

Apple’s photogrammetry toolkit does not provide intrinsic

camera calibrations. Therefore, we cannot project the resulting

mesh onto the captured images to generate the texture. Instead,

we transfer the texture from the photogrammetry’s resulting

mesh to the reconstructed avatar. For each texel, we determine

the point on the avatar using the texture coordinates. We then

calculate the closest point to the mesh from the photogram-

metry and then use its texture coordinates to determine the

texel in the mesh’s texture. This corresponding texel is then

transferred to the avatar texture.

B. Results

The avatar reconstruction with our system takes about 22

minutes. Due to our guided scanning process, the scanning

time is set at two minutes. In the process, 105 images (45

full-body and 60 head images, approx. 320 MB) are captured

using an iPhone. The upload to our server (Mac Studio, M1-

Max 10-Core CPU, 32-Core integrated GPU, 64 GB RAM)

was carried out via a WiFi connection and took on average

less than one minute in our experiments; the reconstruction on

our server took about 19 minutes. Figure 7 shows renderings

of our reconstructed avatars. All subjects were scanned using

our custom smartphone application running on an iPhone 12

Pro, and the avatars were automatically computed on our

processing server.

To quantitatively evaluate the reconstructed avatars, we

compare to the multi-camera rig approach of Achenbach et

al. [14]. Furthermore, we present qualitative comparisons to

the smartphone-based scanning of Wenninger et al. [18].

Quantitative Comparisons: For quantitative comparisons,

we scanned 33 subjects and created personalized avatars using

our smartphone application running on an iPhone 13 Pro Max

and using the expert body scanner of the Embodiment Lab

at the University of Würzburg (see Section IV). The scanner

consists of a circular rig equipped with 106 Canon EOS 1300D

DSLR cameras and uses the approach of Achenbach et al.

[14]. Scans were performed by an expert system operator

who guided the scanned participant. The work of Bartl et al.

[81] provides a detailed description of the whole system. We

compute the reprojection error, similar to Wenninger et al.

[18], by first rendering the resulting textured avatar onto the

images captured during the scan process (see Figure 8b). Sec-

ond, the root-mean-square errors are computed on all rendered

pixels per image in CIELab color space. Third, the errors are

averaged over all images, resulting in a metric that allows

us to measure the error resulting from inaccuracies in color

and geometry. Note that we do not have access to intrinsic

camera calibration. Therefore, we use Agisoft Metashape to

compute extrinsic and intrinsic camera calibration and use

those to reproject our avatars. Figure 8a shows the resulting

reprojection errors. In most cases, the results obtained with the

complex camera rig are slightly better than the errors using
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Fig. 7. Exemplary results of our avatar reconstruction pipeline. All subjects were scanned in an uncontrolled outdoor setting.
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Fig. 8. (a): Root-mean-square reprojection errors of [14] and our method. (b): Reprojection of a reconstructed avatar (left half of images) onto an input image
(right half of images).

our method. Although our method requires only a smartphone

camera instead of an expensive camera rig, our overall average

RMSE (µ = 32.83, σ = 4.88) is quite similar to the multi-

camera rig reconstruction (µ = 32.29, σ = 6.36).

Qualitative Comparison with Wenninger et al.: Com-

parisons with Wenninger et al. [18] are shown in Figure 9.

The input images for our method were captured using our

custom smartphone application running on an iPhone 12 Pro,

and the input videos for the method of Wenninger et al. were

recorded with the same iPhone using the system camera app.

The left column shows reconstructions in an indoor setting,

and the right column shows reconstructions in an outdoor

setting. Our avatar pipeline produces similar results regardless

of the scanning location. The main difference between our

two reconstructions is the baked-in lighting in the texture that

occurs due to the different lighting conditions.

The reconstructions of Wenninger et al. look similar to the

real person, but there are greater differences in the shape

of the head and head-to-body proportions. The latter being

even more prevalent in the outdoor setting. Comparing the

results of Wenninger et al. to our method indicates that our

pipeline produces more detailed geometry and a more detailed

texture. This is due to the higher resolution input data and

the improvements in photogrammetry and fitting steps. The

differences in geometry are especially visible in hair regions,

shoulders, and the overall shape of the face. The more detailed

geometry is a result of the higher-resolution input data (see

Section III-A1) and preprocessing (see Section III-A2), which

leads to better photogrammetry results. Therefore, it is possible

to fit the avatar more accurately. The better head-to-body

proportions in our results are due to the alignment of the head

scan to the body scan, as this allows the proportions to be

respected via a simultaneous fitting of the point clouds.

IV. USER STUDY

We conducted a user study following a multi-method ap-

proach to comprehensively evaluate the developed smartphone

app along with the generated avatars (in the following called
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Fig. 9. Comparisons with the avatar reconstruction of Wenninger et al. [18]
(middle) and our reconstructions (bottom) in an indoor setting (left) and an
outdoor setting (right). Input images captured with our smartphone application
(top).

smartphone avatars). The purpose was to improve the user

experience of scanning and being scanned with the smartphone

app and to assess the quality of the avatars subjectively. To this

end, we arranged participants into dyads, where one participant

had to perform a smartphone app scan of another participant.

While the scanning participant evaluated the app’s usability

afterward (in the following called smartphone app evaluation),

the scanned participant assessed the perception of the scanning

processes and the generated avatar (in the following called

avatar evaluation).

For the smartphone app evaluation, participants performing

the smartphone scan were asked to assess the app’s usability

using standardized questionnaires, allowing for comparison

with validated benchmarks. Additionally, we conducted semi-

structured interviews to gather more feedback on the user

experience of both scanning and being scanned with the

smartphone app. The results are used as part of a user-centered

design process to improve the app.

For the avatar evaluation, we utilized a counterbalanced

within-subject design comparing our generated smartphone

avatars to (a) photorealistically reconstructed personalized

avatars from a state-of-the-art expert system (in the follow-

ing called expert avatar, see Section III-B) and (b) gender-

and ethnicity-matched generic avatars. During individual one-

by-one exposures, the scanned participants embodied each

of the three avatar types successively while engaging in

various body-centered movement tasks in front of a virtual

mirror within a VR environment. Afterward, they evaluated

the avatars regarding (a) sense of embodiment and self-

identification, (b) plausibility, and (c) uncanny valley effects.

In a final side-by-side exposure, participants simultaneously

embodied each type of avatar while observing them exclu-

sively from an allocentric perspective in three different virtual

mirrors (one for each type) and answering different preference

questions. Afterward, we asked the participants why they

preferred their chosen avatars.

A. Apparatus

1) Avatars: In the following, we explain the integration of

the three different avatar types utilized in our study.

a) Smartphone Avatars: Each participant attending the

smartphone app evaluation (in the following called scanning

participant) used our smartphone app to create a personalized

avatar for the corresponding participant attending the avatar

evaluation (in the following called scanned participant). We

maintained uniform lighting conditions to enhance the avatars’

comparability with the expert avatars . The scanning partici-

pant received instructions from the smartphone app tutorial

and was directed to guide the scanned participant accordingly.

No further post-processing was performed on the smartphone

avatars.

b) Expert Avatars: We created a personalized expert

avatar for each participant in the avatar evaluation using the

expert body scanner of the Embodiment Lab at the University

of Würzburg (see Section III-B). No further post-processing

was performed on the expert avatars.

c) Generic Avatars: Since avatars not matching the

user’s gender and ethnicity have been shown to impact SoE

particularly negatively [82] and consequently would lead to an

unequal comparison with personalized avatars that are matched

in gender and ethnicity, we decided to match both between

user and generic avatars. To this end, we chose the Validated

Avatar Library for Inclusion and Diversity (VALID) [83].

Through a LimeSurvey questionnaire, each participant in the

avatar evaluation was asked to select the VALID avatar that

matched their own gender and ethnicity most. As the par-

ticipants typically attend studies dressed casually, they could

choose between 42 casually dressed VALID avatars, composed

of three male and three female avatars, each from seven

different ethnicities.

2) Virtual Reality System: The VR system was realized

using Unity 2020.3.25f1 [84]. We utilized a Valve Index head-

mounted display (HMD) featuring a resolution of 1440 ×
1600 px per eye and a total field of view of 114.1×109.4° [85].

Its refresh rate was set to 90 Hz. Participants’ hand and finger

movements were tracked through two Index controllers and

their built-in proximity sensors. Four SteamVR base stations

covered the 3× 3m tracking area. All mentioned components

were integrated into the VR system using SteamVR version 2.3

[86] and its corresponding Unity plug-in version 2.7.3 [87]. We

routed the HMD’s cable to a VR-capable workstation (Intel

Core i7-7700K CPU, NVIDIA GeForce GTX 1080, 16 GB

RAM) running the VR system on Windows 10. For body
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tracking, we utilized the markerless body tracking system

from Captury. Body poses were captured using eight FLIR

Blackfly S BFS-PGE-16S2C RGB cameras running at 100 Hz,

which have been connected via two 4-port 1 GBit/s ethernet

frame-grabber to a high-end workstation (NVIDIA GeForce

RTX 3080 Ti, 32 GB RAM, AMD Ryzen 9 5900x) running

Captury Live in version 259 [88] on Ubuntu 18 LTS. The body

poses were continuously integrated into the VR system using

Captury’s corresponding Unity plug-in [89].

3) Avatar Embodiment: We realized avatar embodiment by

retargeting the participant’s tracked body pose to the used

avatar in real-time following the joint approaches described

in previous work [9], [90]. During a short calibration process,

where the participant had to stand rigidly and upright, the

embodied avatar was calibrated to continuously follow the

position of the HMD and scaled to match the participant’s eye

height. To avoid sliding feet and inaccuracies in hand and feet

positions caused by variations in skeletal structure, segment

lengths, or insufficient hand tracking, we utilized an IK-

supported end-effector optimization using FinalIK version 2.1.

Due to a higher accuracy and sampling rate, hand positions

and finger poses were taken from the Index controllers while

elbow, knee, and foot positions were taken from Captury.

4) Virtual Environment and Tasks: Our virtual environment

was based on different Unity assets, which we adapted to

create a realistically rendered setting. Figure 10 depicts the vir-

tual environment, accommodating up to three virtual mirrors.

Following the guidelines for self-observation mirror placement

by Wolf et al. [85], each virtual mirror was positioned at a

distance of 1.5 m to the participant during the study.

a) One-By-One Exposure: During each one-by-one ex-

posure, participants embodied one of the three avatars in the

virtual environment, where only the middle virtual mirror

was shown. They could either observe their embodied avatar

directly from an egocentric perspective or look into the virtual

mirror to receive an allocentric perspective. Participants were

asked to perform various body movement tasks in front of the

virtual mirror to promote visuomotor coupling and induce SoE

[50], [91]. The body movement tasks adhered to a structured

protocol adapted from Roth and Latoschik [92] and can be

found in the supplements of this work.

b) Side-By-Side Exposure: During the side-by-side ex-

posure, participants embodied all three avatars simultaneously

in the virtual environment, where all three virtual mirrors were

shown. While they received no egocentric perspective on the

avatars, they could observe each avatar through an individual

virtual mirror. The mirrors were labeled with small num-

bers, and participants responded to four different preference

questions by identifying the mirror number displaying their

preferred avatar. The assignment of avatars to mirrors changed

randomly after each question. The preference questions can be

found in the supplements of this work. Figure 10 depicts the

side-by-side exposure.

B. Measures

1) Quantitative Measures: We assessed all quantitative

measures using previously published questionnaires. When

Fig. 10. The three mirrors showing the expert (left), smartphone (middle), and
generic (right) avatar of a female participant during the side-by-side exposure.

available, we used validated translated German versions of

the utilized questionnaires. Otherwise, we used back-and-forth

translations to translate items into German. Participants an-

swered all questionnaires on a Mac Book Pro using LimeSur-

vey [93].

a) Usability: We captured the usability of the smart-

phone app using the System Usability Scale (SUS) [94]. It

provides a fast and simple way to assess a system’s usability

using ten questionnaire items each answered on a 5-point

Likert scale. The calculated overall score ranges between 0

and 100 (100 = highest usability) and can be compared with

benchmarks provided by previous work [95], [96], [97].

b) Sense of Embodiment and Self-Identification: For

assessing SoE towards the avatars, we captured virtual body

ownership (VBO) and agency (AG) utilizing the corresponding

items of the Virtual Embodiment Questionnaire (VEQ) [92]

and self-location (SL) using the additional items introduced

by Fiedler et al. (VEQ+) [62]. For assessing self-identification

towards the avatars, we used the items capturing self-similarity

(SS) and self-attribution (SA) from the VEQ+. Each measured

factor comprises four items rated on a 7-point Likert scale (7

= highest VBO, AG, SL, SS, and SA).

c) Plausibility: We captured the avatars’ plausibility uti-

lizing the Virtual Human Plausibility Questionnaire (VHPQ)

[98], [99]. It consists of seven items that assess the avatars’

appearance and behavior plausibility (ABP) and four items for

matching the virtual environment (MVE). Each item is rated

on a 7-point Likert scale (7 = highest ABP and MVE).

d) Uncanny Valley: We captured tendencies of the

avatars’ appearance towards the uncanny valley using the

revised version of the Uncanny Valley Index (UVI) [100]. It

comprises four items each to assess the avatars’ humanness

(HU) and attractiveness (AT) and eight items to capture the

avatars’ eeriness (EE). While the items are answered on a

range between -3 and 3, we report it on a range between 1

and 7 (7 = highest HU, AT, EE).

e) VR Sickness: As a control measure, we captured

participants’ physical symptoms associated with VR sickness

in a pre-post comparison using the Virtual Reality Sickness

Questionnaire (VRSQ) [101]. It consists of nine items, each
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of which represents a typical symptom of VR sickness and is

answered on a scale between 0 and 3 (3 = highest symptoma-

tology). The total score of the VRSQ ranges between 0 and

100 (100 = highest VR sickness).

2) Qualitative Measures: We conducted semi-structured in-

terviews to assess the user experiences related to both scanning

and being scanned with the smartphone app. The interview

protocols incorporated a retrospective thinking-aloud approach

[102], [103] to comprehensively analyze the interactions with

the smartphone app while not influencing the scan experiences.

We further included predefined questions to query positive

and negative feelings experienced during the use of the app

and while being scanned, the app’s functionality and its

intended purpose, the impact of the scanning participant on

the comfort or discomfort when being scanned, and the clarity

and comprehensibility of the scanning process. Additionally,

participants described aspects of the process they found ef-

ficient or challenging and reported any problematic incidents

they faced. Finally, participants could suggest enhancements

to both the functionality of the scan app and the scanning

process and were asked about their scan preferences and if

they would participate in a body scan again. Participants in

the avatar evaluation were further asked which avatar they

preferred in terms of self-representation similarity, fidelity,

plausibility, and suitability, along with reasons behind their

choices. The complete interview protocols and exact phrasing

of the preference questions can be found in the supplements

of this work.

C. Procedures

In the following, we describe the standardized experimental

procedures of our smartphone app and avatar evaluations.

Figure 11 visualizes both procedures and highlights their

intersection during the smartphone app scan. Initially, par-

ticipants in both procedures received information about the

study and privacy, consented to participate, and generated

two pseudonymization codes to separately store personal (i.e.,

voice recordings and avatars) and evaluation data. Subse-

quently, they proceeded with their respective evaluation pro-

cedures.

1) Smartphone App Evaluation: Each participant in the

smartphone app evaluation first completed a tutorial on how

to perform a body scan using the smartphone app. As soon

as the other participant arrived for the scan in the laboratory,

both participants were introduced to each other. The participant

performing the scan verified that all requirements for the

scan were met and instructed the scanned participant not to

speak or move during the scan. To ensure that an evaluateable

avatar was generated, the scanning participant carried out two

scans successively. After scanning, the scanned participant

left the laboratory, and the scanning participant answered

the SUS questionnaire using LimeSurvey. Following that, the

participant was interviewed and completed demographics. On

average, the entire smartphone app evaluation took approxi-

mately 41 min.

2) Avatar Evaluation: Each participant in the avatar eval-

uation first participated in a smartphone and expert scan
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Fig. 11. Experimental procedure of a dyad, illustrating the process of
evaluating the smartphone app (left) and the avatars (right).

conducted in a counterbalanced order. After the scans, the

participant was interviewed about the scan processes, chose a

generic avatar as described above, completed the demograph-

ics, and answered the pre-VRSQ. The one-by-one exposures

followed in a counterbalanced order, each lasting on average

7.6 min. After each exposure, the participant answered the

VEQ, VEQ+, and UVI. The following side-by-side exposure

averaged 4.2 min and was accompanied by the preference

questions answered verbally in VR. For each exposure, a

vision test and the avatar embodiment calibration were per-

formed following the instructions displayed on a virtual white-

board. In addition, the participant received audio instructions

for all tasks. Finally, the participant completed the post-VRSQ.

On average, the entire avatar evaluation lasted 103 min.

D. Participants

Adhering to the ethical standards of the Declaration of

Helsinki, our study received approval from the ethics review

board of the Institute Human-Computer-Media (MCM) at

the University of Würzburg 1. We recruited a total of 66

participants organized into 33 dyads using the local participant

management system and compensated them either by course

credits or cash, both depending on the duration of their

participation. In none of the dyads, participants knew each

other before the study. All participants had normal or corrected

vision and no hearing impairment. Participants evaluating the

smartphone app (19 female, 14 male) were aged between

19 and 41 (M = 26.60, SD = 5.48). None of them had

used the smartphone app before. Participants evaluating the

avatars (25 female, 8 male) were aged between 20 and 49

(M = 27.64, SD = 6.90). While none of them had been

scanned with the smartphone app before, nine participants had

previously taken part in an expert scan. Most participants in

1https://www.mcm.uni-wuerzburg.de/forschung/ethikkommission/
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the avatar evaluation (29 White, 2 Asian, 1 MENA) chose a

generic avatar that matched their ethnicity. Only one White

participant chose a Hispanic avatar. Ten participants used VR

for the first time, 20 up to ten times, one more than ten times,

and two more than 20 times.

We excluded one dyad from our statistical analysis as one

participant used the smartphone app contrary to the instruc-

tions, resulting in an unusable avatar. While all participants

stated that they had more than five years of experience with

the German language, we had to exclude another participant

from the avatar evaluation as the experimenter felt that the

participant did not understand the questions and instructions

correctly, which was confirmed by implausible answers and

outliers in the data. Hence, 32 datasets remained for the

smartphone app and 31 for the avatar evaluation.

E. Data Analysis

We conducted all quantitative analyses using SPSS version

29.0.2.0 [104]. Before running the statistical tests, we checked

whether our data met the assumption of normality and spheric-

ity for parametric testing. Shapiro-Wilk tests showed clear

violations of the normality assumption for both dimensions

of the VHPQ and minor violations for VEQ agency and

VEQ+ self-location. Mauchly’s test for sphericity confirmed

homoscedasticity between the groups for all of our measures.

Since variance analysis shows robustness to slight violations

of normality for groups with N ≥ 30 [105], we decided to

perform parametric tests for all measures except those from

the VHPQ. All main tests have been performed against an α

of .05, while post-hoc tests have been Bonferroni adjusted.

The qualitative feedback has been analyzed following the

principles of thematic analysis [106]. Due to space restrictions,

we decided to report the results mainly based on the frequency

of certain feedback while mostly refraining from direct quotes.

F. Results

1) Smartphone App Evaluation: The quantitative evaluation

of the smartphone app’s usability resulted in a reasonably

high SUS score (M = 78.83, SD = 12.23). As we merely

evaluated the first version of the app without a comparative

condition, we compared the results to absolute benchmarks

from existing literature. According to Sauro and Lewis [96],

our smartphone app shows above-average usability. While a

score between 77.2 and 78.8 leads to a usability grade of

B+, a score between 78.9 and 80.7 relates to an A-. This

grade matches the classifications of the adjective rating scale

of Bangor et al. [95], where a score above 71.4 is considered

good, while a score above 85.5 would be excellent. According

to the work of Kortum and Sorber [97], our smartphone app’s

usability can almost keep up with the usability of the ten most-

used iPhone apps, which have an average SUS score of 79.3.

When analyzing interviews about the usability of the smart-

phone app, the majority of the 32 participants performing

the smartphone app scan found it highly usable. Twenty-nine

participants found the app’s functionality and purpose easy to

understand, while 26 reported they constantly knew how to use

it. As particularly useful features, 20 participants highlighted

the overlay for controlling scan distance and movement, 16

participants the initial tutorial, and five participants the arrows

indicating the movement direction. Nonetheless, challenges

were also noted. Twenty-three participants reported difficulties

maintaining an appropriate moving pace while scanning, with

six participants emphasizing this problem, especially for the

head scan. Similarly, seven and six participants reported issues

with aligning the overlay while moving and keeping the

correct distance, respectively. Six participants mentioned the

need for high concentration, and 18 felt a bit uncomfortable

due to the close proximity to the scanned participant. Six

participants considered the relatively long duration of the scan

process as unpleasant. To address the mentioned aspects, eight

participants suggested a more detailed tutorial, and another

four suggested an initial overlay mapping to the height of

the scanned participant. To improve the scan process, five

participants recommended more interaction with the scanned

person, five more additional feedback on pacing their move-

ment during the scan, and another five stressed the need to

shorten the scan duration.

In addition to feedback on performing the scan, we obtained

reports from the 32 scanned participants on their scanning

experience. Overall, the process was clear and manageable,

with 30 participants completely understanding the required

actions. All participants confirmed their willingness to par-

ticipate in a smartphone app scan again. However, compared

to expert scans, 21 participants noted the smartphone app

scan was slower, and 22 found it less comfortable. Prolonged

posing discomfort was mentioned by twelve participants, while

wardrobe and hairstyle constraints were issues for another

four. Fourteen participants anticipated a difference between an

expert and a beginner performing the smartphone scan, with

four believing the expert would be faster. When asked about

suggestions for improvement, four participants indicated that

they would accelerate the process to reduce the discomfort

of holding the scan pose. Regarding the head scan, four

participants suggested a fixation to aid focus, and three to

increase the distance between the camera and the head.

2) Avatar Evaluation: To perform group comparisons on

our avatar evaluation data, we calculated either a repeated-

measures ANOVA for measures that met the requirements

for parametric analysis or Friedman tests as a non-parametric

alternative. The descriptive data and the results of the group

comparisons can be found in Table I. For all tests revealing sig-

nificant differences between groups, we calculated Bonferroni-

corrected pairwise post-hoc comparisons that are reported in

Figure 12.

During the side-by-side exposure, we asked participants

about their preferences regarding self-representation similarity,

fidelity, plausibility, and suitability, along with reasons behind

their choices. Out of the 31 participants included in the

analysis, 16 perceived the smartphone avatars to be more

similar to themselves, while 13 preferred the expert avatars.

Regarding self-representation fidelity, 11 participants preferred

the smartphone avatars, 19 chose the expert avatars, and one

favored the generic one. To feel most plausibly represented

in VR, 12 participants chose the smartphone avatars, 18 the

expert avatars, and one the generic one. When asked which
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TABLE I
EXACT DESCRIPTIVE VALUES FOR EACH MEASURE OF THE AVATAR EVALUATION PER GROUP AND STATISTICAL RESULTS OF THE GROUP COMPARISONS.

Smartphone Avatars Expert Avatars Generic Avatars
Group Comparisons

M (SD) M (SD) M (SD)

Sense of Embodiment

VEQ Ownership (VBO) 4.10 (1.50) 4.79 (1.28) 3.75 (1.44) F (2, 60) = 11.011, p < .001, η2
p
= .268

VEQ Agency (AG) 5.57 (0.96) 5.97 (0.79) 5.79 (0.81) F (2, 60) = 2.845, p = .066, η2
p
= .087

VEQ+ Self-Location (SL) 4.11 (1.07) 4.14 (1.03) 3.73 (1.13) F (2, 60) = 3.502, p = .036, η2
p
= .275

VEQ+ Self-Similarity (SS) 5.69 (1.11) 5.85 (0.68) 2.69 (1.23) F (2, 60) = 82.651, p < .001, η2
p
= .734

VEQ+ Self-Attribution (SA) 4.69 (1.21) 4.99 (0.99) 3.37 (1.16) F (2, 60) = 31.390, p < .001, η2
p
= .511

Plausibility

VHPQ Appearance/Behaviour (ABP) 4.84 (0.82) 5.33 (0.78) 5.27 (0.78) χ2(2) = 4.581, p = .101,W = .074
VHPQ Match to VE (MVE) 5.15 (0.98) 5.47 (1.14) 5.80 (0.65) χ2(2) = 5.782, p = .056,W = .093

Uncanny Valley

UVI Humanness (HU) 3.46 (1.16) 3.84 (1.08) 3.36 (0.90) F (2, 60) = 2.444, p = .095, η2
p
= .075

UVI Eeriness (EE) 4.05 (0.79) 3.87 (0.97) 3.15 (0.79) F (2, 60) = 19.313, p < .001, η2
p
= .392

UVI Attractiveness (AT) 3.90 (1.20) 4.13 (0.84) 4.52 (0.69) F (2, 60) = 3.264, p = .045, η2
p
= .098
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avatar the participants would prefer to be represented in

VR, 10 chose the smartphone avatars, 17 the expert avatars,

and four the generic ones. When asked for their reasoning,

participants favoring smartphone avatars mostly mentioned

a detailed facial reconstruction and realism as key factors.

Those participants who preferred expert avatars highlighted

the accuracy of body shape reconstruction, noting issues with

smartphone avatars’ body proportions, particularly the arms.

Participants who chose generic avatars consistently did so be-

cause of overall dissatisfaction with their personal appearance

rather than avatar quality.

V. DISCUSSION

In this section, we discuss the results of the comparisons

with two different avatar reconstruction methods and the

results of our user study and present the limitations of our

work.

A. Smartphone App Evaluation

We evaluated the usability of our smartphone app quanti-

tatively using the SUS questionnaire and qualitatively using

semi-structured interviews, including a retrospective thinking-

aloud approach. The SUS results showed that our smartphone

app is already well usable. The qualitative feedback confirmed

this impression and highlighted the overlay and tutorial as par-

ticularly positive features. However, the qualitative feedback

also revealed areas for improvement.

As part of the user-oriented design process, we already

incorporated suggested improvements. To address comments

regarding the duration of the scan and the pace, we added the

option to shorten or extend the scan speed within technical

means. Unclear parts in the tutorial have been improved to

prepare users better for the scan. Other feedback could not be

implemented due to technical limitations or requires further

research. For example, the distance between the smartphone

and the scanned person, especially during the head scan, could

only be increased by the loss of detail in the reconstructed

avatars. However, since the high quality of the faces is a

significant advantage of our system, we decided to keep the

required distance. Furthermore, the interaction between the

scanning and scanned person and visual aids (e.g., fixation

point) for the scanned person lies outside the influence of our

smartphone application.

B. Avatar Evaluation

As described in Section III-B, the expert-operated system

of Achenbach et al. [14] and our proposed novice-operated

system produced photorealistic avatars of similar quality. The

calculated reprojection errors were comparably low. These re-
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sults highlight the potential and advantages of our method, en-

abling non-expert users to generate photorealistic, personalized

avatars without requiring expensive hardware. The comparison

with the method of Wenninger et al. [18] further showed that

our introduced WILDAVATARS system outperforms existing

smartphone reconstruction solutions, even when dealing with

more complex input data due to less strict restrictions on

scanning locations and subject appearances. The result is a

more convincing avatar reconstruction, with more detailed

geometry and better texture quality.

In comparison to the work of Waltemate et al.[10], our user

study confirmed that realistic avatars still offer substantial ben-

efits over generic avatars for self-representation, even when the

generic avatars are also personalized in gender and ethnicity

[83], [82]. Regarding the comparison, some further notable

findings need to be addressed. The statistically significant

difference in virtual body ownership between the smartphone

and expert avatars can potentially be attributed to observed

motion artifacts, which can degrade the avatars’ appearance.

However, the smartphone avatars perform descriptively still

better than the generic avatars. Regarding self-identification,

the smartphone and expert avatars both show significant ad-

vantages to generic avatars, although the smartphone avatars

were generated using a significantly cheaper method than

the expert avatars. For the smartphone avatars, participants

emphasized particularly the high similarity of the head. How-

ever, results also showed that the eeriness of realistic avatars

was significantly higher than generic avatars. This is likely

attributable to an Uncanny Valley effect originating from

the emotional relatedness to self-personalized avatars, which

has also been observed in other research [65], [66]. When

considering the plausibility of the avatars, it is noticeable

that the reconstruction described most realistically had the

lowest match with the perceived plausibility. This discrepancy

might be attributed to the incongruence between the virtual

environment’s realistic style and the avatars’ photorealistic

style [63].

C. Limitations

Our study and our system have some limitations that we

would like to describe in the following:

Motion Artifacts: Since our method uses photogram-

metry software to generate point clouds from images, the

input images must contain as little movement as possible.

If movement occurs in the background, the segmentation

significantly improves the photogrammetry results. However,

the motions of the scanned subject violate the photogrammetry

assumption, i.e., that the scanned object is rigid and not

moving, leading to less accurate point clouds and, therefore,

geometric deformations in the final avatar. Figure 7 shows this

problem in more detail, as the arms of the second avatar (from

left) have visible differences in thickness.

Mesh-Based Representation: We use a mesh-based model

for our avatars. Therefore, clothing, hair, and skin are all

represented in the same surface, which can create wrong

impressions. To compensate for this, one could incorporate

Gaussian Splatting techniques to create a more realistic im-

pression [31], [44], [45].

Crowded Background: Our system uses image segmen-

tation to preprocess the input and mask out regions that do

not contain people. For that reason, people in the background

are a challenging task as they are not removed. We want to

explore the capabilities of the depth sensor to discard people

in the background from the masks.

VI. CONCLUSION

We presented WILDAVATARS, a system that allows non-

expert users to scan people and automatically reconstruct

realistic VR-ready full-body avatars that achieve similarly

good perception results compared to avatars reconstructed with

expensive state-of-the-art expert systems. We proposed meth-

ods to reduce restrictions and limitations on scanning locations

and provide helpful feedback by visually guiding users through

the scanning process. Our system will be publicly available for

research purposes, enabling the realization of avatar-related

studies. Since the system was designed using a user-centered

process, it is easily understandable and allows non-experts to

use photorealistic avatars without difficult-to-use equipment.
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