
EUROGRAPHICS 2025 / A. Bousseau and A. Dai
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 44 (2025), Number 2

NePHIM: A Neural Physics-Based Head-Hand Interaction Model

Nicolas Wagner1,2 , Ulrich Schwanecke2 , and Mario Botsch1,3

1TU Dortmund University, Germany
2RheinMain University of Applied Sciences, Germany

3Lamarr Institute for Machine Learning and Artificial Intelligence, Germany

Figure 1: The different steps of NePHIM by means of a single frame: a) Two of the 16 views of our multi-camera rig used to capture head-hand
interactions and corresponding landmarks. b) Our proposed simulation for head-hand interactions in comparison to the tracked input (after
fitting template surfaces to the landmarks (IK)) and the simulation used in the previous state-of-the-art [SGPT23]. c) Prediction of the efficient
neural network trained to approximate our simulation.

Abstract
Due to the increasing use of virtual avatars, the animation of head-hand interactions has recently gained attention. To this
end, we present a novel volumetric and physics-based interaction simulation. In contrast to previous work, our simulation
incorporates temporal effects such as collision paths, respects anatomical constraints, and can detect and simulate skin pulling.
As a result, we can achieve more natural-looking interaction animations and take a step towards greater realism. However, like
most complex and computationally expensive simulations, ours is not real-time capable even on high-end machines. Therefore,
we train small and efficient neural networks as accurate approximations that achieve about 200 FPS on consumer GPUs,
about 50 FPS on CPUs, and are learned in less than four hours for one person. In general, our focus is not to generalize the
approximation networks to low-resolution head models but to adapt them to more detailed personalized avatars. Nevertheless,
we show that these networks can learn to approximate our head-hand interaction model for multiple identities while maintaining
computational efficiency.
Since the quality of the simulations can only be judged subjectively, we conducted a comprehensive user study which confirms
the improved realism of our approach. In addition, we provide extensive visual results and inspect the neural approximations
quantitatively. All data used in this work has been recorded with a multi–view camera rig. Code and data are available at
https://gitlab.cs.hs-rm.de/cvmr_releases/HeadHand.

1 Introduction

How many times per hour do you think you touch your face?
Probably more often than you are aware of. Although the an-
swer to this question varies in scientific studies, it can be said

that, on average, people touch their heads several dozen times an
hour [KGM15, RMF20, MMG19]. There are many ways to inter-
act, such as touching, stroking, scratching, rubbing, pulling, tug-
ging, squeezing, and caressing, to name but a few. Behavioral sci-
ences do not conclusively answer why people touch their faces,

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European
Association for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial
License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.

https://orcid.org/0000-0002-6225-1003
https://orcid.org/0000-0002-0093-3922
https://orcid.org/0000-0001-9954-120X
https://gitlab.cs.hs-rm.de/cvmr_releases/HeadHand

2 of 14 Wagner et al. / NePHIM

yet the implications even extend to computer graphics. Due to the
frequency and expressiveness of head-hand interactions, simulating
them in facial animations would considerably improve user per-
ception. Especially with the focus on photo-realistic avatars these
days [QKS∗24,MWSZ24,ZBT23,AXS∗22,GKE∗22], the relevance
of authentic facial animations is further accentuated.

Only recently, attempts to incorporate head-hand interactions
into facial animations have been proposed [SGPT23, WDX∗24].
In particular, these approaches address two main challenges. Nat-
urally, the simulation of interactions is the main emphasis, but
three-dimensional tracking of the head and hands is also a pre-
requisite for realistic animations. Shimada et al. [SGPT23] and
Wu et al. [WDX∗24] are impressive in determining simulated 3D
head and hand surfaces from a single monocular image. However,
both neglect the fidelity of the interaction animation as they are
based on the same rather coarse physics-based surface simulation.
More sophisticated, detailed, and anatomically accurate volumetric
physics-based simulations of heads have been explored in other
contexts [SNF05, IKKP17, Con16, CZ24].

This work introduces a substantially improved physics-based
simulation of head-hand interactions and designs more realistic
interaction mechanisms. For instance, in contrast to the previous
methods, we consider pulling interactions and the influence of the
skull. Since this simulation is not real-time capable, we also learn
a personalized neural network as an approximation. Both our sim-
ulation and the network process tracked head and hand surfaces
and thus remain compatible with the tracking concepts of previous
approaches [SGPT23, WDX∗24]. Another contribution of this work
is the creation of a dataset of real head-hand interactions. To this end,
we built a multi-view rig with 16 high-resolution and synchronized
video cameras with which we recorded several subjects. Unlike the
only other comparable dataset available [SGPT23], we did not in-
struct the participants which head-hand interactions to perform. We
simply asked the participants to perform arbitrary interactions and
can, therefore, reproduce an even wider range of hand movements in
our data. Among other things, we also capture skin pulling, which
was previously ignored. Figure 1 is an exemplary illustration that
shows a recorded pulling frame, the associated simulation, and the
approximation by our neural network.

We evaluate our approach qualitatively using visual examples
and the accompanying video of dynamic head-hand interaction an-
imations. Furthermore, we conducted an extensive user study that
confirms that our approach is perceived more naturally than pre-
vious ones. Quantitative experiments demonstrate that the neural
approximation can be created in just a few hours and adapted to mul-
tiple human identities simultaneously. The trained network achieves
around 50 frames-per-second (FPS) even on slower CPUs.

2 Related Work

In this section, we discuss three literature fields related to our ap-
proach. First, Section 2.1 presents physics-based facial animations in
general. Next, Section 2.2 addresses recent developments focusing
specifically on animated head-hand interactions. Finally, Section 2.3
examines work in which neural networks approximate physics-based
simulations.

2.1 Physics-Based Facial Animations

Heuristic physics-based facial simulations have been developed for
a long time and principally intend to compensate for shortcom-
ings of simpler but popular facial animation methods like linear
blendshapes [LAR∗14]. For instance, artifacts like implausible con-
tortions and self-intersections can be avoided by including volumet-
ric and anatomical constraints. The pioneering work of Sifakis et
al. [SNF05] is a volumetric physics-based facial simulation that runs
on a personalized tetrahedral mesh. Unfortunately, the tetrahedral
mesh can only be of limited resolution due to an associated dense op-
timization problem. With Phace [IKKP17, IKNDP16], an improved
simulation concept has been introduced, which is also defined on
a tetrahedral mesh but can handle higher resolutions and considers
anatomical structures more precisely. In addition to a tetrahedral
mesh, the art-directed muscle models [CF19,BCGF19,Con16] repre-
sent muscles as B-splines that steer facial expressions via trajectories
of spline control points. A solely inverse model for determining the
physical properties of faces was proposed in [KK19].

Thanks to increased computing capabilities, data-driven physics-
based facial simulations have also become appealing recently. An
example is the model of Yang et al. [YKZ∗22] that learns to vol-
umetrically animate a person’s face from multi-view videos with
the help of differentiable physics [DWM∗21]. Although Yang et
al. [YZC∗23] extend the model to cover several identities, adding
a novel identity requires five days of retraining and the inference
of one frame runs multiple seconds. While faster alternatives ex-
ists [WBS23], generally, heuristic as well as data-driven physics-
based simulations are not commonly used in real applications due
to their complexity and computational effort. Other data-driven ap-
proaches include Animatomy [CEM∗22], which represents muscles
as curves, and the implicit model of Chandran et al. [CZ24]. The
aforementioned data-driven simulations are not designed to handle
collisions and external interactions.

2.2 Head-Hand Interactions

All previously discussed simulations have in common that they are
primarily aimed at facial animation, facial retargeting, or face re-
construction, but not at the simulation of external influences such
as hands. Although models like Phace [IKKP17] are theoretically
applicable in such scenarios, the non-trivial practical implemen-
tation of interactions has not happened until lately. Shimada et
al. [SGPT23] propose the first head-hand interaction simulation, De-
caf, and demonstrate how a neural network can learn the simulation
while generalizing over the FLAME head model [LBB∗17] and the
MANO hand model [RTB17]. Decaf focuses on mapping a single
RGB image to interaction deformations, using only a surface-based
simulation that, in terms of quality and realism, falls short of the
volumetric simulations discussed in Section 2.1. Also, the low res-
olution and the sometimes too smooth representation of heads in
FLAME are often insufficient for demanding applications. Wu et
al. [WDX∗24] advance Decaf by an extended generalization to in-
the-wild images. Unfortunately, the underlying simulation remains
the same. Consequently, we focus on a more realistic simulation for
personalized and more detailed head avatars.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Wagner et al. / NePHIM 3 of 14

Variable Description
S,J,C Tetrahedral meshes of soft tissue, jaw,

and cranium
H,L,R,J,C Surface meshes of head, left hand, right hand,

jaw, and cranium
E∗ Energies
w∗,s∗ Scalar weights
C∗ Vertex targets of hand interactions
I∗ Set or dictionary of vertex indices
∗t Indicates the time step t of a variable
∗src Indicates the source src of a variable
XT Sequence (Xt)

T
t=1 of T surface meshes Xt

X̃ Projection into PCA space of surface mesh X
v,c,t A geom. element like a vertex v, a cylinder c,

or a tetrahedron t
func Denotes a function

Table 1: The notation of the main concepts of Section 3.

a) b) c) d)

Figure 2: a) Full-body template which includes the head template
surface H shown in b). c) Cross section of the connected tetrahe-
dral meshes S,J,C. d) The template jaw and cranium surfaces J,C
embedded in the tetrahedral meshes.

2.3 Approximating Physics-Based Simulations

As we accelerate our approach with efficient neural networks, we
also give a brief overview of the literature on neural approximations
of physics-based simulations. On the one hand, there are general
methodologies [SWR∗21] that also explicitly deal with interac-
tions of two or more objects [RCCO22, RCPO21]. On the other
hand, there are methods with a focus on bodies [SGOC20, CO18]
or heads [WBS23]. For NePHIM, we adopt the general method
of subspace neural physics [HDDN19] that is, in particular, com-
putationally efficient for approximating simulations of interacting
objects.

3 Method

This section first outlines the objectives of our approach (Section 3.1)
and then presents the formal implementation (Sections 3.2–3.5). To
support the reading flow, we slightly misuse the notation in the
following derivations by denoting a mesh and the corresponding
vector of stacked vertex positions with the same symbol. Table 1
gives a summary of the notation.

3.1 Objectives & Method Overview

We consider an animation at time T with tracked surfaces for the
left hand Ltra

T , the right hand Rtra
T , and the head H tra

T of a person.
Given the corresponding neutral head surface mesh H as well as
tracked sequences (consisting of all previous frames up to T) for
the left hand LT =

(
Ltra

t
)T

t=1, right hand RT =
(
Rtra

t
)T

t=1, and head

HT =
(
H tra

t
)T

t=1, our first objective is to deform the tracked head
surface mesh at time T , H tra

T , to

Hphy
T = phy(RT ,LT ,HT ,H) , (1)

such that head-hand interactions are resolved realistically through
a physics-based simulation phy. Previous methods [SGPT23,
WDX∗24] determine deformations through a simple surface-based
simulation [MHHR07] incorporating only constraints for the skin
surface and (static) pushing hand interactions. We improve realism
by implementing phy (Section 3.3) as a volumetric simulation that
additionally respects

• long-term collision paths of pushing interactions,
• pulling hand interactions,
• and volumetric anatomical constraints.

Although the resulting Hphy
T appears more natural (Section 4.4),

our simulation phy is not real-time capable and, hence, potential
applications are restricted. Therefore, our second objective is to train
a neural network net (Section 3.5) that approximates Hphy

T while
being real-time capable even on CPUs.

3.2 Volumetric Template

In the remainder of this section, we will precisely state phy and
net. However, as our approach is intended to reflect volumetric
constraints, we first introduce a head template(H,J,C,S,J,C) as the
foundation of phy. The template includes the neutral head surface
mesh H ⊂ S that encloses a soft tissue tetrahedral mesh S. The two
template surface meshes J,C form the corresponding skull as jaw
and cranium and are filled with respective tetrahedral meshes J and
C. All tetrahedral meshes are connected, and the surface vertices
of H can be addressed in S with the same indices. An experienced
digital artist designed the template surfaces while the tetrahedral
meshes were created with TetGen [Han15].

Figure 2 b–d visualize all template components; all dimensions
can be found in Appendix A. The tessellation of H is aligned with
a full-body avatar (Figure 2a), which is part of the code release to
easily integrate NePHIM into other applications.

To register the volumetric template to a tracked person, we ex-
pect the neutral head surface H of this person to be known. Then,
we reposition the skull components by a dense linear model that
we trained on the computed tomography dataset of Achenbach et
al. [ABG∗18]. Formally, this model maps from the vertex positions
of H to the vertex positions of the jaw J and the cranium C. The
vertices of each tetrahedral mesh S,J,C are placed by radial basis
function space warps [BK05] calculated from the respective enclos-
ing surfaces in the template to the corresponding surfaces of the
tracked person.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 of 14 Wagner et al. / NePHIM

Figure 3: Overview of the three stages of our approach. a) Data capturing as described in Section 4.1. b) All steps of our physics-based
simulation phy as explained in Section 3.3. c) Efficient neural approximation net of phy as explained in Section 3.5.

3.3 Simulation

Building on the volumetric template, we can now continue with
the detailed introduction of our physics-based simulation phy. As
Algorithm 1 outlines, phy conducts four steps that are described in
separate subsections from Section 3.3.1 to Section 3.3.4. Figure 3b
visualizes an exemplary cycle of all steps. Since we want to take
long-term effects such as collision paths and skin pulling into ac-
count, it is not sufficient to consider only the last time step T to
determine Hphy

T . Instead, we start at the beginning of the tracked
sequences and run all four simulation steps consecutively for each
time step t.

3.3.1 Expression Fitting

As the initial simulation step, we deform the neutral volumetric
tetrahedral meshes S,J, and C in an anatomically plausible manner
to fit the tracked surface H tra

t instead of the neutral surface H. To
this end, we minimize a constraint-based energy in the projective
dynamics (PD) simulation framework [BML∗14]. The first objective

Etarget
(
H ,H tra

t
)
=
∥∥H −H tra

t
∥∥2 (2)

attracts the surface vertices H ⊂ S of the soft tissue tetrahedral mesh
towards the tracked head surface. The second objective

Estrain(S) = ∑
t∈S

st min
R∈SO(3)

‖∇(t)−R‖2
F (3)

models strain for each soft tissue tetrahedron t∈ S. Here, R ∈ SO(3)
denotes the optimal rotation, ∇(t) ∈ R3×3 the deformation gradient
of t (w.r.t. the neutral rest shape), ‖·‖F the Frobenius norm, and
st ∈ (0,1] is a stiffness value calculated as in [SGPT23]. In intuitive

and simplified terms, the stiffness decreases the further a tetrahedron
is located from the skull. Analogous to the soft tissue strain, we also
add strain energies for the jaw Estrain(J) and the cranium Estrain(C).
Overall, the weighted energy

Etracked
(
H tra

t ,S,J,C
)
= wtarEtarget

(
H ,H tra

t
)
+

wSEstrain(S)+
wJEstrain(J)+
wCEstrain(C)

(4)

is minimized. To reflect that both jaw and cranium are rigid, we set
the weights wJ and wC to a high value compared to wtar and wS and
apply a constant stiffness of one. The values of all weights and other
simulation parameters can be found in Appendix B. The outputs of
the optimization are the tracked tetrahedral meshes(

Stra,Jtra,Ctra)= argmin
S,J,C

Etracked
(
H tra

t ,S,J,C
)
. (5)

Please note that although there are more detailed simulation meth-
ods than PD [LFS∗20, IKKP17, YKZ∗22], these are often more
complex and cannot outweigh the efficiency of PD in our use case.

3.3.2 Detect Interactions

Subsequently, we detect pushing and pulling head-hand interactions
and translate them into target positions of the head vertices Cpush
and Cpull, which we will simulate in the next step (Section 3.3.3).

Pushing Interactions We first explain how we handle pushing in
phy. Previous approaches [SGPT23,WDX∗24] would simply iterate
over the vertices of the head surface H tra

t and if a vertex enters
either the left hand Ltra

t or the right hand Rtra
t , it is moved in the

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Wagner et al. / NePHIM 5 of 14

Algorithm 1 Volumetric Physics-Based Simulation phy

Function phy(RT ,LT ,HT ,H)

// Section 3.2 Register Template to Neutral
Register volumetric template (Figure 2) to obtain the tracked per-
son’s volumetric head description (H ,J ,C ,S,J,C) .

t = 1
while t ≤ T do

// Section 3.3.1 Expression Fitting
Step 1 Determine the tracked tetrahedral meshes Stra,Jtra,Ctra by
aligning S,J,C with the tracked head surface H tra

t as described
in Equation (5).

// Section 3.3.2 Detect Interactions
Step 2 Determine the push and pull target positions Cpush,Cpull
as described in Algorithm 2 and Algorithm 3, respectively.

// Section 3.3.3 Simulate Interactions
Step 3 Determine the interaction tetrahedral meshes Sint,Jint,Cint

by applying the push and pull targets Cpush,Cpull to H tra
t as de-

scribed in Equation (9).

// Section 3.3.4 Corrections
Step 4 Determine the corrected tetrahedral meshes Scor,Jcor,Ccor

by resolving remaining collisions Icorr as described in Equa-
tion (11). Extract Hphy

t from Scor.

t = t +1

// Return the simulated head surface
return Hphy

T

direction of the corresponding inverted normal until the collision
is resolved. Unfortunately, this strategy largely ignores temporal
dependencies, and the normal direction only provides an imprecise
collision resolution.

For this reason, we rely on the linear movements between Hphy
t−1

and H tra
t , Ltra

t−1 and Ltra
t , as well as Rtra

t−1 and Rtra
t , i.e., between the

previous simulated frame and the current tracked frame, as formally
described in Algorithm 2. Expressed in words, we check at short
intervals ε between the time steps t −1 and t whether one of the two
hands touches a vertex of the head. If so, the head vertex is dragged
from the initial point of contact with the hand at ε to the same point
on the hand at time t. Please see Figure 4a for a visual explanation.
Our way of resolving hand pushing is more natural and incorporates
long-term effects per construction. Although there are more involved
and time-consuming forms of continuous collision detection, these
did not yield substantially better results in our experiments.

Pulling Interactions Pulling is considerably more challenging and
has not been addressed in prior approaches. We present a heuristic in
Algorithm 3 that does not require cumbersome friction calculations
but, unfortunately, still has an elaborated notation. Yet, the founda-
tional idea of our heuristics can easily be put into words. First, we
form cylinders with radius r between the fingertips of all fingers
(index, middle, ring, little) and the thumb as illustrated in Figure 4b.
Then, for each cylinder, we determine whether it grabs, i.e., has
shortened in length from time step t −1 to time step t. If so, and if
the length falls below a minimum lmin, all head vertices inside the
cylinder at time t are marked as pulled. We maintain a dictionary
Ipull over time that stores a set of the pulled vertices for each finger.

Algorithm 2 Pushing Interaction

Function push(Hphy
t−1 ,H tra

t ,Ltra
t−1,L

tra
t ,Rtra

t−1,R
tra
t)

// Initialize linear movement directions
Hdir = H tra

t −Hphy
t−1

Ldir = Ltra
t −Ltra

t−1
Rdir = Rtra

t −Rtra
t−1

// Initialize push targets
Cpush = {}
I = {}

// Iterate over linear movements
for ε= 0;ε≤ 1;ε+=∆ε do

// Iterate over head surface vertices
for vH

i ∈
(

Hphy
t−1 + ε ·Hdir

)
do

// Find collisions with left hand
if vH

i collides with
(
Ltra

t−1 + ε ·Ldir
)

and i /∈ I then
// Find nearest neighbor in current left hand
vL

j,ε = nn
(
vH

i ,L
tra
t−1 + ε ·Ldir

)
// Add same vertex of final left hand as target position
Add

(
vL

j,t , i
)

to Cpush

Add i to I
Repeat the same if-clause for the right hand

// Return the push targets
return Cpush

The target positions of the pulled vertices Cpull are calculated so
that they form smooth ridges within the cylinders (see Figure 4b).
The shape of the ridges imitates the skin’s natural deformation due
to pinching. A pulled vertex is unmarked once the corresponding
cylinder exceeds lmin, i.e., the finger no longer grabs.

3.3.3 Simulate Interactions

For applying the previously determined push and pull targets Cpush
and Cpull to the tracked head H tra

t , we again make use of a PD
simulation on the fitted tetrahedral meshes Stra,Jtra, and Ctra (Sec-
tion 3.3.1). Here, we establish anatomical plausibility similar as
before by adding strain constraints Estrain

(
Stra), Estrain

(
Jtra), and

Estrain
(
Ctra) to the simulation. Also as before, we add

Etarget
(
H tra,H tra

t
)
=
∥∥∥H tra −

(
H tra

t +
α

s

(
Hphy

t−1 −Hphy
t−2

))∥∥∥2
(6)

to draw the surface vertices H tra ⊂ Stra of the soft tissue to the
tracked surface. This time, however, including damped velocities of
the head, where s denotes the size of a time step. A low damping
factor α adds natural-looking dynamic effects to the interactions.

New to the simulation are the target constraints

Epush
(
H tra,Cpush

)
= ∑

(p,i)∈Cpush

‖p−vi‖2 ,

Epull
(
H tra,Cpull

)
= ∑

(p,i)∈Cpull

‖p−vi‖2 ,
(7)

which draw interacting vertices vi ∈H tra to their precalculated target

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6 of 14 Wagner et al. / NePHIM

Algorithm 3 Pulling Interaction
Notation
cL, f

t Cylinder of finger f of the left hand L at timestep t
len Length of a cylinder
Ipull[L, f] Dictionary entry of key L, f , i.e., a set

Function pull(H tra
t ,Ltra

t−1,L
tra
t ,Rtra

t−1,R
tra
t , Ipull)

// Initialize pull targets
Cpull = {}
// Check if new vertices are pulled per cylinder
for f = 1; f ≤ 4; f += 1 do

// Pull only if cylinder gets smaller and is small enough
if len

(
cL, f

t

)
< len

(
cL, f

t−1

)
and len

(
cL, f

t

)
< lmin then

// Check for each head vertex if inside cylinder
for vi ∈ H tra

t do
if vi inside cL, f

t then
Append i to Ipull[L, f]

// Check if vertices are no longer pulled per cylinder
for f = 1; f ≤ 4; f += 1 do

if len
(
cL, f

t

)
≥ lmin then

Ipull[L, f] = /0

// Calculate target positions of pulled vertices per cylinder by
// creating a ridge per cylinder as defined in Appendix C
for f = 1; f ≤ 4; f += 1 do

Append ridge
(

Ipull[L, f],H tra
t ,cL, f

t

)
to Cpull

Repeat same procedure for the right hand

// Return the pull targets
return Cpull

position p. Overall, the weighted energy

Einter
(
Cpush,Cpull,H

tra
t ,Stra,Jtra,Ctra)=

wpushEpush
(
H tra,Cpush

)
+

wpullEpull
(
H tra,Cpull

)
+

wtarEtarget
(
H tra,H tra

t
)
+

wSEstrain
(
Stra)+

wJEstrain
(
Jtra)+

wCEstrain
(
Ctra)

(8)

is minimized, where we again set the weights wJ and wC to a high
value for approximating a rigid skull. Likewise, the weights wpush
and wpull are set to a high value to enforce the target positions, but
lower as wJ,wC. By balancing the previously mentioned weights,
we achieve a more natural simulation since the bones do not bend
in the case of tracking errors and too deeply penetrating hands. The
outputs of the optimization are the interaction tetrahedral meshes(

Sint,Jint,Cint
)
= argmin
Stra,Jtra,Ctra

Einter
(
Cpush,Cpull,

H tra
t ,Stra,Jtra,Ctra). (9)

3.3.4 Corrections

The preceding steps of phy do not fully resolve all head-hand
collisions. For instance, the last step in Section 3.3.3 allows soft

Figure 4: a) Visualization of pushing as described in Section 3.3.2
and Algorithm 2. Here, ε is a substep between the time steps t −1
and t. b) Illustration of a finger cylinder with radius r, length l, and
an exemplary ridge shape that is used for pulling as described in
Algorithm 3.

tissue vertices that previously did not collide to move inside the
hands. To correct most remaining colliding vertices, summarized
with their indices in Icorr, we perform the previous PD simulation
again but add an additional constraint. This constraint

Ecorr

(
Sint, Icorr

)
= ∑

i∈Icorr

∥∥nn(vi,Ltra
t ,Rtra

t
)
−vi

∥∥ (10)

draws each colliding vertex vi ∈ Sint to the nearest neighbor
nn

(
vi,Ltra

t ,Rtra
t
)

of vi on the left or right hand Ltra
t ,Rtra

t . The outputs
of the optimization are the corrected tetrahedral meshes

(Scor,Jcor,Ccor) = argmin
Sint,Jint,Cint

wcorrEcorr

(
Sint, Icorr

)
+

Einter

(
Cpush,Cpull,H

tra
t ,Sint,Jint,Cint

)
.

(11)

The deformed surface Hphy
t = phy(Rt ,Lt ,Ht ,H) ⊂ Scor can

now be extracted as the outer boundary of the soft tissue mesh. After
the four steps of phy described in Sections 3.3.1–3.3.4 have been
carried out consecutively for all time steps through to T , Hphy

T is
obtained.

3.4 Recursive Formulation

The previous description of phy serves the intuitive derivation, but
suggests that the computational effort increases linearly with each
additional frame. However, this is not the case, since by the design

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Wagner et al. / NePHIM 7 of 14

Figure 5: An overview of the efficient network architecture of net.
Basically, a simple MLP with only 65536 parameters.

of phy, we can rewrite Equation (1) recursively as

Hphy
T = phy(Ltra

T ,Rtra
T ,H tra

T ,

Ltra
T−1,R

tra
T−1,H

phy
T−1,

Hphy
T−2).

(12)

Hence, we can reuse simulated frames instead of always simulating
all time steps.

3.5 Neural Simulation Approximation

As the derivations in the previous sections already indicate, phy is
not real-time capable. Therefore, we construct net, a neural net-
work that can be evaluated even on CPUs with 50 FPS (Table 4) and
that closely approximates phy. From the wide corpus of techniques
that already exist for approximating physic-based simulations (Sec-
tion 2.3), we adapt subspace neural physics (SNP) [HDDN19] to our
needs. Here, we only explain our adapted architecture of net, as
the original publication extensively describes the training algorithm
and we do not modify it.

The principle idea of SNP is to project all inputs and outputs into
smaller linear subspaces (e.g. using principal component analysis
(PCA)) and to train net on the projection. In the following, the
pedant of a variable in its respective subspace is referenced with an
overlying tilde. The inputs of net with regard to phy as defined in
Equation (12) are

Ltra
T ,Rtra

T ,H tra
T ,Ltra

T−1,R
tra
T−1,H

net
T−1,H

net
T−2. (13)

Consequently, we have to create PCA subspaces for the tracked left
hand, the tracked right hand, the tracked head, and the simulated
head, respectively. The overall training goal is then to minimize

min
net

∥∥∥H̃net
T − H̃phy

T

∥∥∥2
, (14)

where

H̃net
T = net(L̃tra

T , R̃tra
T , H̃ tra

T ,

L̃tra
T−1, R̃

tra
T−1, H̃

net
T−1,

H̃net
T−2).

(15)

A visual illustration of the inputs and outputs of net is depicted in
Figure 3c and our architecture can be found in Figure 5. To recover
Hnet

T from H̃net
T , the PCA of the simulated heads is applied. By

selecting an appropriate number of components of the subspace, we
prevent the loss of geometric details.

4 Results

The result section is organized as follows. First, we outline how we
capture and process real head-hand interactions to form training and
test data (Section 4.1). The same subsection also contains a descrip-
tion of the resulting dataset and details on training and evaluation
protocols. In Section 4.2, we discuss qualitative characteristics of the
simulation phy and the approximation net using visual examples.
In Section 4.3, we examine quantitative characteristics and also take
a closer look at running times as well as training times. Finally, we
present the results of a user study (Section 4.4) that supports the
more natural perception of our approach.

4.1 Dataset & Training

To capture real head-hand interactions, we use a multi–view rig
consisting of 16 synchronized and calibrated XIMEA [Xim24] RGB
cameras generating 12-megapixel images at 20 FPS. In each cap-
tured image, we predict 2D landmarks for both hands and head
using existing tracking methods [BT17, ZBV∗20]. For the hands, a
landmark is predicted for each joint, each fingertip, and the wrists.
For heads, we only capture the contours of the eyes and the mouth,
as can be seen in Figure 1. From the 2D landmarks, we generate 3D
landmarks per frame using a basic bundle adjustment algorithm.

Since our simulation phy is conceptualized to work on tracked
surfaces, the last step in the capturing pipeline is to fit appropriate
template surfaces to the 3D landmarks. Regarding the head, we
initially create a high-resolution personalized head avatar for the
recorded person with an automated 3D reconstruction and (nonlin-
ear) template fitting pipeline [WAB∗20]. Afterward, we add linear
blendshapes to the avatar by an automated volumetric deformation
transfer [WSB24, SP04] of a set of template blendshapes. The tem-
plate blendshapes represent the 52 ARKit expressions [App24] and
were manually sculpted once by a professional digital artist.† Finally,
we optimize per frame a set of corresponding blendshape weights, a
translation vector, and a rotation matrix to fit the head surface to the
respective 3D landmarks. Regarding the hands, we adopt a similar
approach. Here, however, we do not use a personalized hand model
but optimize the pose and shape parameters of the MANO [RTB17]
hand model to match the respective 3D landmarks. Contrary to the
pose parameters, the shape parameters are the same for each frame.
We use gradient descent as the optimizer for the surface fittings.
Figure 3a illustrates all steps of the capturing pipeline.

The dataset we compiled contains up to 10 recordings of each
of 8 individuals. The individuals are Caucasian males aged 26 to
54 with a body mass index ranging from slightly underweight to
obese. Each recording lasts approximately 30 seconds and captures
arbitrary head-hand interactions. In particular, we did not instruct

† The template blendshapes are part of the code release.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

8 of 14 Wagner et al. / NePHIM

Tracked Ours Decaf [SGPT23] Tracked Ours Decaf [SGPT23]

Figure 6: The figure shows examples of our simulation phy and compares them to the tracked surfaces as well as the simulation of
Decaf [SGPT23]. In the top left, for example, the advantage of simulating the skull becomes apparent near the cheekbone. In the top right
image, a pulling interaction is shown and the lower images demonstrate the importance of (time-dependent) collision paths.

the individuals on which hand movements or facial expressions
they should perform. Appendix D summarizes the frequency and
the types of interactions. Overall, we captured, reconstructed, and
simulated around 50000 frames for this work. All of the following
experiments concerning the neural network net are always stated as
an average of five runs, and we uniformly (i.e., non-consecutively)
draw random train/test splits (90%/10%) for each run. All PCA
subspaces have 32 components, which is sufficient in our case as
we do not intend to generalize over large head or hand models.
We rebuilt the subspaces for each run on the respective training
data, and if several individuals are part of an experiment, we form
joint subspaces. Neural networks and the inference of PCAs are
implemented with PyTorch [PGM∗19] while PCA subspaces are
constructed with the default implementation of Scikit [PVG∗11].

4.2 Qualitative Evaluation

Figure 6 (and additional examples in Appendix E) display instances
of the simulation phy in comparison to the tracked surfaces as well
as the simulation of the current state-of-the-art Decaf [SGPT23].
Please note that we implemented the latter simulation ourselves
as the announced implementations are not (yet) available. Decaf
results sometimes appear slightly different to those from [SGPT23],
which mainly stems from the fact that our head avatars are more

detailed than FLAME [LBB∗17] and that we did not instruct the
recorded persons which head-hand interactions they should perform.
In the shown examples, it is especially striking that our temporal
processing of hand pushes leads to effects such as a bent nose, a
pushed-up mouth corner, or even a pushed-down lip. Moreover, the
pulling of skin is readily recognizable and appears natural. None
of these effects can be observed with the other methods. The ac-
companying video demonstrates the advantages of our method for
dynamic scenes.

Besides the more general examples, we show further visual com-
parisons to inspect individual stages of our approach. Figure 7 em-
phasizes the necessity of the correction step of phy (Section 3.3.4)
while Figure 8 stresses the relevance of modeling temporal effects
in our simulation. However, Figure 8 not only exhibits the impact
of temporal effects on our simulation but also contrasts our simu-
lation without temporal effects to the Decaf [SGPT23] simulation.
Finally, Figure 9 underpins the advantage of a volumetric anatomy
simulation by contrasting bendable and rigid bones.

Examples of our simulation phy along with the learned approxi-
mation net are depicted in Figure 10. For this purpose, we trained
net on all identities in our dataset simultaneously. Although minor
discrepancies can be recognized, these do not appear to be decisive
for visual perception. Moreover, the quality of the approximation is

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Wagner et al. / NePHIM 9 of 14

Tracked Without With

Figure 7: Examples of our simulation phy without and with the
correction step (Section 3.3.4). Errors due to the missing correction
step can accumulate over time.

Tracked Decaf [SGPT23] Without With

Figure 8: Examples of our simulation phy without and with tempo-
ral effects as well as the Decaf [SGPT23] simulation.

not affected by whether the head-hand interactions are pushing or
pulling. Again, the accompanying video contains further examples.

4.3 Quantitative Evaluation

4.3.1 Accuracy

This section mainly investigates the quantitative properties of the
network net and the simulation phy. To begin with, we have a look
at the approximation accuracy of net. For this purpose, Table 2
summarizes average train and test subspace errors (mean squared
error) of net as well as the average and maximum reconstruction

Tracked 0.0 0.5 1.0

Figure 9: Example of our simulation phy applying either 0%, 50%,
or 100% of the bone weights wJ,wC.

Dataset # Identities
Subspace Reconstruction

Mean MSE Mean `2 Max `2

Train
One 0.011 0.02 cm 0.11 cm

Eight 0.041 0.04 cm 0.18 cm

Test
One 0.052 0.09 cm 0.23 cm

Eight 0.056 0.10 cm 0.35 cm

Table 2: Train and test errors of the neural approximation net of
the simulation phy. The table is separated by the number of identi-
ties net was trained on. The errors stated for one identity are the
average over separate networks for all identities in our dataset.

errors on the actual surfaces (`2 error). There is also a breakdown by
the number of identities with which we trained and tested net. The
table indicates that the reconstruction test errors are never greater
than a millimeter on average, and our implementation of net has
sufficient capacity to generalize over several identities. Moreover,
the likewise small maximum reconstruction errors indicate that all
kinds of simulated deformations can be adequately approximated
by net without hallucinating non-existent interactions.

4.3.2 Plausibility

In Table 3, we compare the plausibility of our network net, our
simulation phy, and the simulation of Decaf [SGPT23] by means of
quantitative metrics introduced in Shimada et al. [SGPT23]. Among
them is the Non Collisions metric, which captures the number of
collision-free frames after applying a method. We also state the Col-
lision Distance, which measures the average per-vertex depth of the
remaining collisions. We complement the existing metrics with the
Deformation Distance, which calculates the average per-vertex de-
formation of the tracked head caused by a method. Table 3 indicates
that all methods significantly reduce the number of colliding frames,
and the remaining collisions are less deep. Although Decaf appears
to better resolve collisions at first glance, this is to be expected, as it
is able to bend bones unnaturally, for instance. This expectation is
also supported by the Deformation Distance, which demonstrates
that Decaf tends to apply larger deformations in general.

4.3.3 Timings

Table 4 summarizes the average running times of phy and net.
On the one hand, with a runtime of 876 ms per frame on an AMD

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

10 of 14 Wagner et al. / NePHIM

Tracked Simulation Approximation Tracked Simulation Approximation

Figure 10: Examples of our simulation phy along with the tracked surfaces as well as the learned neural approximation net (trained on all
identities in our dataset). The quality of the approximation is independent of whether it is a pushing or a pulling interaction.

Method Non Collisions Collision Dist. Deformation Dist.

Tracked 53 % 1.20 cm 0.00 cm
phy 69 % 0.19 cm 0.11 cm
net 68 % 0.20 cm 0.09 cm

Decaf 8 % 0.09 cm 0.16 cm

Table 3: Plausibility metrics to compare our simulation phy, the
Decaf simulation [SGPT23], and our network net to the tracked
input. Non Collisions is the percentage of frames without collisions,
Collision Distance measures the average per-vertex penetration
depth of the remaining collisions, and Deformation Distance indi-
cates the average per-vertex deformation by the respective method.

Input Size
phy net net
CPU CPU GPU

1 × 876 ms 19.2 ms 5.1 ms
2 × 2248 ms 34.6 ms 7.3 ms
4 × 6553 ms 79.2 ms 9.4 ms

Table 4: The average inference times of the simulation phy and
the neural approximation net depending on the input size, i.e., the
number of surface vertices, the number of volumetric vertices, and
the size of the PCA subspaces.

Ryzen Threadripper PRO 3995WX, phy is evidently not realtime-
capable. On the other hand, net can be executed not only on a
consumer-grade GPU (NVIDIA RTX 3090) but also on a weaker
CPU (Intel i5 12600K) with more than 50 FPS. In comparison, our
implementation of the simulation of Decaf [SGPT23] runs in 178 ms
per frame on the Threadripper CPU. The entire pipeline, as shown in
Figure 3, from data acquisition to training net only takes about 20
hours for eight identities and 3.5 hours for one identity. We trained
on a NVIDIA A6000 GPU for four hours (eight identities) or one

Tracking + net Decaf Dice

15.3 ms / 66 FPS 88 ms / 11.5 FPS 19590 ms / 0.05 FPS

Table 5: GPU inference times of our neural approximation
net compared to Decaf [SGPT23] and Dice [WDX∗24]. For a
fair comparison, since Decaf and Dice include tracking components,
we added Mediapipe’s [BT17, ZBV∗20] head and hand tracking
ahead of our network. The times were measured on a 128-core AMD
Ryzen CPU and a NVIDIA A6000 GPU.

and a half hours (one identity). The short training time is mainly
due to the efficient network architecture.

The aforementioned running times depend on the resolution of
the underlying template. Although our template is already able
to capture detailed deformations, Table 4 also shows that we can
still efficiently execute net if the template is further refined. To
that end, we doubled and quadrupled the number of surface and
volumetric template vertices (remeshing) as well as the size of the
PCA subspaces. On the CPU, net still runs at interactive rates if
the resolution is doubled, whereas on the GPU, even a quadrupling
is feasible. Nevertheless, as can also be seen in Table 4, the running
time of the simulation increases substantially, and so does the time
needed for generating training data.

We have intentionally designed net to be independent of any
particular tracking method, and the running times stated in Table 4
imply that it can readily be integrated with other applications. How-
ever, in order to compare the inference times with those of De-
caf [SGPT23] and Dice [WDX∗24], we trained a slightly modified
net. For this modification, we input 2D head and hand landmarks
tracked by Mediapipe [BT17, ZBV∗20] on the most frontal camera
of our multi–view rig instead of PCA subspace representations of
the undeformed surfaces. The test errors of this network are close

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Wagner et al. / NePHIM 11 of 14

Figure 11: A user study among 53 participants supports that our
approach is recognized as more natural. For each video shown in
the user study, our approach received the most votes.

to those stated in Table 2 (see Appendix F). Since the other two
methods are not intended to run on the CPU, we only compare the
GPU (A6000) running times listed in Table 5. It becomes apparent
that, including visual tracking, our approach is still around 6 times
faster than Dice and 1300 times faster than Decaf.

4.4 User Study

To support the qualitative results, we conducted an online user study
with 53 participants from two universities. Each participant watched
five random example videos that compared the tracked surfaces, the
simulated surfaces of Shimada et al. [SGPT23], and our (neural)
approximated surfaces as in Figure 6. The videos are randomly
drawn from the sequences in our dataset. Participants were asked
to choose the most natural-looking of the three variants for each
video. To avoid any bias, we rendered all surfaces in the same color
and arranged the variants in random orders. To ensure independent
documentation, we used survio.com for the technical implemen-
tation.

Figure 11 summarizes the outcome of the user study as the pro-
portion of votes each variant received. Our approach achieved the
most votes for all videos by a considerable margin.

5 Limitations

The most significant limitations of our approach result from missing
details in the foundational physics-based simulation phy as demon-
strated in Figure 12. For instance, tracking errors can cause hands
to move too deep into the head such that the skull is penetrated. In
this case, we consider it more natural to not fully resolve collisions
rather than bend bones (Figure 12a). We also do not resolve self-
collisions between lips or lips and teeth (Figure 12b). Finally, in our
anatomical head model, cartilage components are not sufficiently
taken into account, causing the nose or ears to bend a bit too much
when the hands push firmly (Figure 12c).

Regarding the efficient approximation of phy by the neural net-
work net, one can consider a lack of generalization over an exten-
sive set of head shapes as a limitation. However, in contrast to pre-

(a) (b) (c)

Figure 12: (a) displays remaining collisions due to rigid bones, (b)
self-intersections of lips, and (c) a too bendy nose due to missing
cartilage.

vious work [SGPT23, WDX∗24] our focus is on personalized head
avatars that exhibit a much higher level of detail and authenticity
than commonly used head models [LBB∗17, FFBB21]. Moreover,
our experiments with multiple head shapes (Section 4.3) indicate
generalization capacities of net, and the short training time of our
approach should be sufficient in most scenarios to train net to a
given personalized head avatar.

Finally, a greater diversity in our dataset would be desirable.
Although we cover a wide range of head shapes with different
anatomical compositions, a more diverse coverage of genders and
ethnicities would strengthen our results.

6 Conclusion

In this work, we presented NePHIM, a neural physics-based head-
hand interaction model. NePHIM extends previous interaction sim-
ulations [SGPT23, WDX∗24] with various features such as time-
dependent collision paths, pulling of skin, and a higher anatomical
precision. Comprehensive experiments and a user study show that
our approach is perceived as being considerably closer to reality
than the previous state-of-the-art [SGPT23]. Furthermore, we suc-
cessfully learned a neural approximator of the simulation that allows
for rapid inference even on consumer-grade devices.

Nevertheless, we also discussed limitations that provide various
starting points for future work. For instance, more detailed anatomi-
cal structures and physical properties may enhance the simulation.
Moreover, learning the deformation of interactions directly from
multi-view videos can contribute to further improvements.

Acknowledgments
This research was supported by the German Federal Ministry of
Education and Research (BMBF) through the project HiAvA (ID
16SV8785). Open Access funding enabled and organized by Projekt
DEAL.

References
[ABG∗18] ACHENBACH J., BRYLKA R., GIETZEN T., ZUM HEBEL K.,

SCHÖMER E., SCHULZE R., BOTSCH M., SCHWANECKE U.: A multi-
linear model for bidirectional craniofacial reconstruction. In Proceedings

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

survio.com

12 of 14 Wagner et al. / NePHIM

of the Eurographics Workshop on Visual Computing for Biology and
Medicine (2018), pp. 67–76. 3

[App24] APPLE INC.:, September 2024. https://developer.
apple.com/augmented-reality/arkit/. 7

[AXS∗22] ATHAR S., XU Z., SUNKAVALLI K., SHECHTMAN E., SHU
Z.: RigNeRF: Fully controllable neural 3D portraits. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2022), pp. 20364–20373. 2

[BCGF19] BAO M., CONG M., GRABLI S., FEDKIW R.: High-
quality face capture using anatomical muscles. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2019), pp. 10802–10811. 2

[BK05] BOTSCH M., KOBBELT L.: Real-time shape editing using radial
basis functions. Computer Graphics Forum 24, 3 (2005). 3

[BML∗14] BOUAZIZ S., MARTIN S., LIU T., KAVAN L., PAULY M.:
Projective dynamics: fusing constraint projections for fast simulation.
ACM Transactions on Graphics (ToG) 33, 4 (2014), 1–11. 4

[BT17] BULAT A., TZIMIROPOULOS G.: How far are we from solving
the 2D & 3D face alignment problem?(and a dataset of 230,000 3D facial
landmarks). In Proceedings of the IEEE International Conference on
Computer Vision (2017), pp. 1021–1030. 7, 10, 14

[CEM∗22] CHOI B., EOM H., MOUSCADET B., CULLINGFORD S., MA
K., GASSEL S., KIM S., MOFFAT A., MAIER M., REVELANT M.,
ET AL.: Animatomy: an Animator-centric, Anatomically Inspired System
for 3D Facial Modeling, Animation and Transfer. In SIGGRAPH Asia
Conference Papers (2022), pp. 1–9. 2

[CF19] CONG M., FEDKIW R.: Muscle-based facial retargeting with
anatomical constraints. In ACM SIGGRAPH 2019 Talks (New York, NY,
USA, 2019), SIGGRAPH ’19, Association for Computing Machinery. 2

[CO18] CASAS D., OTADUY M. A.: Learning nonlinear soft-tissue dy-
namics for interactive avatars. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 1, 1 (2018), 1–15. 3

[Con16] CONG M. D.: Art-directed muscle simulation for high-end facial
animation. PhD thesis, Stanford University, 2016. 2

[CZ24] CHANDRAN P., ZOSS G.: Anatomically constrained implicit face
models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2024), pp. 2220–2229. 2

[DWM∗21] DU T., WU K., MA P., WAH S., SPIELBERG A., RUS D.,
MATUSIK W.: DiffPD: differentiable projective dynamics. ACM Trans-
actions on Graphics (ToG) 41, 2 (2021), 1–21. 2

[FFBB21] FENG Y., FENG H., BLACK M. J., BOLKART T.: Learning
an animatable detailed 3D face model from in-the-wild images. ACM
Transactions on Graphics (ToG) 40, 4 (2021), 1–13. 11

[GKE∗22] GARBIN S. J., KOWALSKI M., ESTELLERS V., SZYMANOW-
ICZ S., REZAEIFAR S., SHEN J., JOHNSON M., VALENTIN J.: VolTe-
Morph: realtime, controllable and generalisable animation of volumetric
representations. arXiv preprint arXiv:2208.00949 (2022). 2

[Han15] HANG S.: Tetgen, a delaunay-based quality tetrahedral mesh
generator. ACM Trans. Math. Softw 41, 2 (2015), 11. 3

[HDDN19] HOLDEN D., DUONG B. C., DATTA S., NOWROUZEZAHRAI
D.: Subspace neural physics: fast data-driven interactive simulation. In
Proceedings of the 18th annual ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation (2019), pp. 1–12. 3, 7

[IKKP17] ICHIM A.-E., KADLEČEK P., KAVAN L., PAULY M.: Phace:
Physics-based face modeling and animation. ACM Transactions on Graph-
ics (ToG) 36, 4 (2017), 1–14. 2, 4

[IKNDP16] ICHIM A. E., KAVAN L., NIMIER-DAVID M., PAULY M.:
Building and animating user-specific volumetric face rigs. In Symposium
on Computer Animation (2016), pp. 107–117. 2

[KGM15] KWOK Y. L. A., GRALTON J., MCLAWS M.-L.: Face touch-
ing: a frequent habit that has implications for hand hygiene. American
journal of infection control 43, 2 (2015), 112–114. 1

[KK19] KADLEČEK P., KAVAN L.: Building accurate physics-based face
models from data. Proceedings of the ACM on Computer Graphics and
Interactive Techniques 2, 2 (2019), 1–16. 2

[LAR∗14] LEWIS J. P., ANJYO K., RHEE T., ZHANG M., PIGHIN F. H.,
DENG Z.: Practice and theory of blendshape facial models. Eurographics
(State of the Art Reports) 1, 8 (2014), 2. 2

[LBB∗17] LI T., BOLKART T., BLACK M. J., LI H., ROMERO J.: Learn-
ing a model of facial shape and expression from 4D scans. ACM Transac-
tions on Graphics (ToG) 36, 6 (2017). 2, 8, 11

[LFS∗20] LI M., FERGUSON Z., SCHNEIDER T., LANGLOIS T. R.,
ZORIN D., PANOZZO D., JIANG C., KAUFMAN D. M.: Incremen-
tal potential contact: intersection-and inversion-free, large-deformation
dynamics. ACM Trans. Graph. 39, 4 (2020), 49. 4

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX M., RATCLIFF
J.: Position based dynamics. Journal of Visual Communication and Image
Representation 18, 2 (2007), 109–118. 3

[MMG19] MUELLER S. M., MARTIN S., GRUNWALD M.: Self-touch:
contact durations and point of touch of spontaneous facial self-touches
differ depending on cognitive and emotional load. PloS one 14, 3 (2019),
e0213677. 1

[MWSZ24] MA S., WENG Y., SHAO T., ZHOU K.: 3d gaussian blend-
shapes for head avatar animation. In ACM SIGGRAPH 2024 Conference
Papers (2024), SIGGRAPH ’24, Association for Computing Machinery.
2

[PGM∗19] PASZKE A., GROSS S., MASSA F., LERER A., BRADBURY
J., CHANAN G., KILLEEN T., LIN Z., GIMELSHEIN N., ANTIGA L.,
DESMAISON A., KOPF A., YANG E., DEVITO Z., RAISON M., TEJANI
A., CHILAMKURTHY S., STEINER B., FANG L., BAI J., CHINTALA
S.: Pytorch: An imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 2019, pp. 8024–8035. 8

[PVG∗11] PEDREGOSA F., VAROQUAUX G., GRAMFORT A., MICHEL
V., THIRION B., GRISEL O., BLONDEL M., PRETTENHOFER P., WEISS
R., DUBOURG V., VANDERPLAS J., PASSOS A., COURNAPEAU D.,
BRUCHER M., PERROT M., DUCHESNAY E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830. 8

[QKS∗24] QIAN S., KIRSCHSTEIN T., SCHONEVELD L., DAVOLI
D., GIEBENHAIN S., NIESSNER M.: Gaussian avatars: photoreal-
istic head avatars with rigged 3D gaussians. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2024), pp. 20299–20309. 2

[RCCO22] ROMERO C., CASAS D., CHIARAMONTE M. M., OTADUY
M. A.: Contact-centric deformation learning. ACM Transactions on
Graphics (ToG) 41, 4 (2022), 1–11. 3

[RCPO21] ROMERO C., CASAS D., PÉREZ J., OTADUY M.: Learning
contact corrections for handle-based subspace dynamics. ACM Transac-
tions on Graphics (ToG) 40, 4 (2021), 1–12. 3

[RMF20] RAHMAN J., MUMIN J., FAKHRUDDIN B.: How frequently do
we touch facial t-zone: a systematic review. Annals of Global Health 86,
1 (2020). 1

[RTB17] ROMERO J., TZIONAS D., BLACK M. J.: Embodied hands:
Modeling and capturing hands and bodies together. ACM Transactions
on Graphics (ToG) 36, 6 (2017). 2, 7

[SGOC20] SANTESTEBAN I., GARCES E., OTADUY M. A., CASAS D.:
SoftSMPL: data-driven modeling of nonlinear soft-tissue dynamics for
parametric humans. Computer Graphics Forum 39, 2 (2020). 3

[SGPT23] SHIMADA S., GOLYANIK V., PÉREZ P., THEOBALT C.: Decaf:
monocular deformation capture for face and hand interactions. ACM
Transactions on Graphics (ToG) 42, 6 (2023), 1–16. 1, 2, 3, 4, 8, 9, 10,
11, 14

[SNF05] SIFAKIS E., NEVEROV I., FEDKIW R.: Automatic determination
of facial muscle activations from sparse motion capture marker data. ACM
Trans. Graph. 24, 3 (July 2005), 417425. 2

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://developer.apple.com/augmented-reality/arkit/
https://developer.apple.com/augmented-reality/arkit/

Wagner et al. / NePHIM 13 of 14

[SP04] SUMNER R. W., POPOVIĆ J.: Deformation transfer for triangle
meshes. ACM Transactions on Graphics (ToG) 23, 3 (2004). 7

[SWR∗21] SRINIVASAN S. G., WANG Q., ROJAS J., KLÁR G., KAVAN
L., SIFAKIS E.: Learning active quasistatic physics-based models from
data. ACM Transactions on Graphics (ToG) 40, 4 (2021), 1–14. 3

[WAB∗20] WENNINGER S., ACHENBACH J., BARTL A., LATOSCHIK
M. E., BOTSCH M.: Realistic virtual humans from smartphone videos.
In Proceedings of the 26th ACM Symposium on Virtual Reality Software
and Technology (2020), pp. 1–11. 7

[WBS23] WAGNER N., BOTSCH M., SCHWANECKE U.: Softdeca: Com-
putationally efficient physics-based facial animations. In Proceedings of
the 16th ACM SIGGRAPH Conference on Motion, Interaction and Games
(2023), pp. 1–11. 2, 3

[WDX∗24] WU Q., DOU Z., XU S., SHIMADA S., WANG C., YU Z., LIU
Y., LIN C., CAO Z., KOMURA T., ET AL.: Dice: end-to-end deformation
capture of hand-face interactions from a single image. arXiv preprint
arXiv:2406.17988 (2024). 2, 3, 4, 10, 11

[WSB24] WAGNER N., SCHWANECKE U., BOTSCH M.: Anacondar:
Anatomically-constrained data-adaptive facial retargeting. Computers &
Graphics 122 (2024), 103988. 7

[Xim24] XIMEA:, September 2024. https:www.ximea.com. 7

[YKZ∗22] YANG L., KIM B., ZOSS G., GÖZCÜ B., GROSS M., SOLEN-
THALER B.: Implicit neural representation for physics-driven actuated
soft bodies. ACM Transactions on Graphics (ToG) 41, 4 (2022), 1–10. 2,
4

[YZC∗23] YANG L., ZOSS G., CHANDRAN P., GOTARDO P., GROSS
M., SOLENTHALER B., SIFAKIS E., BRADLEY D.: An implicit physical
face model driven by expression and style. In SIGGRAPH Asia 2023
Conference Papers (2023), Association for Computing Machinery. 2

[ZBT23] ZIELONKA W., BOLKART T., THIES J.: Instant volumetric head
avatars. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2023), pp. 4574–4584. 2

[ZBV∗20] ZHANG F., BAZAREVSKY V., VAKUNOV A., TKACHENKA
A., SUNG G., CHANG C.-L., GRUNDMANN M.: Mediapipe hands: on-
device real-time hand tracking. arXiv preprint arXiv:2006.10214 (2020).
7, 10, 14

Appendix
A Template Dimensions

Mesh H J C S J C
Vertices 6688 886 4220 11001 899 3354
Faces / Tets 13372 1768 8444 31456 4190 15634

Table 6: The dimensions of all template components in our experi-
ments.

B Weights & Parameters

wtar wS wJ wC wpush wpull wcorr
102 101 104 104 102 102 102

Table 7: The weights of the physics-based simulations of phy.

Proj. Dyn. Iterations α lmin r s ∆ε

10 0.01 2.5 cm 0.5 cm 50 ms 0.05

Table 8: The parameters of the physics-based simulations of phy.

C Ridge Calculation

Algorithm 4 Cylinder Ridge

c Cylinder
H Head Surface
I Indices of vertices that are in c
vH

i Vertex i of H
len,start,end Length, start, end of a cylinder
plane(r,n) Plane in normal form
mean Mean of vertices
proj(v,p) Project vertex v on plane p

Function ridge(I,H,c)

// Initialize ridge targets
Cridge = {}
// Calculate mean of cylinder
r =(start(c)+end(c))/2

// Calculate normal of cylinder plane
n= r−mean(H)
n /= ‖n‖
// Calculate cylinder plane
p= plane(r,n)

// Calculate targets
for i ∈ I do

// Calculate plane position
vpi = proj

(
vH

i ,p
)

// Calculate a height offset factor
κ = min

(∥∥start(c)−vpi
∥∥ ,∥∥end(c)−vpi

∥∥)/(len(c)/2)

// Add ridge target
Add

(
vp

i +κ ·len(c) ·n, i
)

to Cridge

// Return the ridge targets
return Cridge

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https:www.ximea.com

14 of 14 Wagner et al. / NePHIM

D Dataset

Movement
Single Multiple Open Closed

Finger Fingers Palm Fist

I II I II I II I II

Poke / Touch

Cheeks - 4 2 3 - 4 - -

Nose 2 - - - - - - -

Forehead - - 1 - - - - -

Chin - - - - - - 4 -

Pinch / Squeeze

Lips - - 5 - - - - -

Cheeks - - 13 - - 2 - 3

Rub / Stroke

B → F - 2 6 1 1 12 - 1

F → B - - - 2 - 5 - 2

D → U - - - - 4 7 - 2

U → D - 2 3 3 2 5 - 1

L → R - - - - - 1 - -

R → L - - - - - 1 - -

Circle - 2 - 7 - 7 - -

Punch

Cheeks - - - - 6 - 4 3

Pull / Tug

Lips 1 3 - - - - - -

Cheeks - 7 - 8 - - - -

Nose 2 - - - - - - -

Sum 5 20 33 24 13 44 8 12

Table 9: Quantitative description of the captured hand-head inter-
actions. The number of involved hands is indicated by I and II. A
direction is indicated by → where B,F,D,U,L, and R abbreviate back,
front, down, up, left, and right, respectively.

E Additional Simulation Examples

Tracked Ours Decaf [SGPT23]

Figure 13: The figure shows examples of our simulation phy and
compares them to the tracked surfaces as well as the simulation
of Decaf [SGPT23]. Here, the hands are solely rendered for the
tracked meshes to accentuate the simulated deformations.

F Tracking Network

Dataset # Identities
Reconstruction

Mean `2 Max `2

Test
One 0.11 cm 0.29 cm

Eight 0.14 cm 0.46 cm

Table 10: Test errors of the neural approximation net of the sim-
ulation phy paired with Mediapipe [BT17, ZBV∗20] tracking as
described in Section 4.3.3.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

