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Abstract

Recent developments in smartphone-based avatar reconstruction
have made the creation of personalized and realistic avatars signifi-
cantly more accessible. However, relying on one smartphone cam-
era leads to capturing images sequentially, which introduces new
challenges; particularly longer capture times increase the suscepti-
bility to subject motion, which results in degraded reconstructions.
We present a novel approach for smartphone-based avatar recon-
struction that combines photogrammetry, silhouette constraints,
and inverse rendering to produce high-fidelity, realistic avatars
free of motion-induced artifacts. By using short, motion-resilient
image sequences, referred to as sub-scans, we considerably reduce
motion-induced artifacts. Our pipeline achieves high visual quality
while offering improved robustness and outperforms current state-
of-the-art methods in terms of computation time and accuracy.
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1 Introduction

The growing availability of consumer-grade Virtual Reality (VR)
devices has led to an increased number of use cases for VR - ranging
from gaming and social applications to therapy scenarios [50]. In
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social VR and therapy applications in particular, the faithful and
realistic visual representation of the user is of crucial importance,
as it directly influences the feeling of embodiment and thus the
immersion of the entire experience [16, 25, 47, 51].

As aresult, research into avatar reconstruction has risen in recent
years. These reconstruction methods often use large multi-camera
rigs [1, 12, 34], which produce photorealistic avatars, but require
specialized personnel to operate, are expensive due to the amount
of high-end cameras, and are location-bound. To overcome these
issues, other approaches use monocular camera/smartphone in-
put instead. Although this greatly reduces costs and makes it less
location-bound, the usage of monocular cameras leads to longer
scanning procedures, which introduce new problems, in particu-
lar unintentional motion during the scanning process. Some ap-
proaches use photogrammetry for high geometric detail but ignore
the potentially occurring motion of the subject, tolerating possible
artifacts [35, 56]. Others utilize silhouette constraints to improve
the robustness of the fitting, but geometric detail and quality of
the texture are not satisfactory [3-5]. Recent avatar reconstruction
methods [17, 18, 22, 23, 41, 43, 53, 58] based on Neural Radiance
Fields [36] or 3D Gaussian Splatting [24] better incorporate the
occurring motion into their fitting/training process. They often
use inverse rendering frameworks, but the outcomes are (often)
unsuitable for VR applications, due to slow inference time, slow
rendering, and visual artifacts.

We present a novel avatar reconstruction method that leverages
the advantages of photogrammetry, silhouette constraints, and in-
verse rendering to create high-fidelity avatars from smartphone im-
ages. We split the input image sequence into distinct subsequences
to generate several point clouds that do not contain motion-induced
artifacts. After that, we fit a high-resolution mesh-based template
model to the different resulting point clouds and additionally use
silhouette constraints to compensate for remaining motions within
each subsequence. This results in realistic, personalized, and VR-
ready full-body avatar.

2 Related Work

This section provides an overview of the current state of research
on avatar reconstruction. We first group approaches by the type of
representations used for the resulting avatar models; second, we
describe methods categorized by the scanning device.
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2.1 Representation of Avatars

Recently, numerous approaches have been published that utilize
representations based on 3D Gaussian Splatting (3DGS) [12, 17, 19,
29, 31, 37, 38, 41, 43, 48, 55, 58]. Starting from a mesh or a point
cloud, these approaches use a mixture of 3D Gaussians to represent
the avatar, enabling the reconstruction of fine details (e.g. wrinkles,
hair). These Gaussians are view-dependent, which further enhances
realism by accounting for occlusion and perspective effects that
vary with the camera angle. Early 3DGS-based approaches required
significant time to compute Gaussians [19, 38, 55]; however, new
methods reduce this to minutes [12, 30, 41, 48]. Furthermore, recent
approaches reach 150 to 300 fps in rendering performance, which
allows the use of these models for real-time applications [20, 30, 48].
However, as current VR devices typically render at 70-120 fps,
the usage for VR applications remains a challenging task, as the
rendered scenes usually consist of more than just one avatar (e.g.,
multiple avatars and the surrounding environment). Iandola et al.
[21] showed that it is necessary to reduce the number of Gaussians
to make 3DGS-avatars usable on VR devices. However reducing
the number of Gaussians also reduces the rendering quality. The
view-dependence of Gaussians, typically a key advantage of this
representation, also poses challenges for VR. If the training data
lacks sufficient coverage of possible views and poses, novel views
create artifacts that undermine the realism of the avatar, as we show
in Section 4.1.

In contrast, many approaches employ mesh-based representa-
tions for the resulting avatar models, as mesh-based models are
highly efficient in terms of rendering speed, can be easily animated
into novel poses, and are view-consistent [1, 4, 5, 14, 35, 52, 56].
They are widely used to represent 3D models and characters, mak-
ing them compatible with current game engines and 3D programs.

Our goal is to generate realistic VR-ready full-body avatars with
broad usability and applicability. For this, the disadvantages of
3DGS-based methods outweigh their benefits. Ultimately, users
will control their avatar, leading to unpredictable new poses and
views. Due to the guaranteed spatial consistency and the broad
compatibility of mesh-based 3D models with current game engines
(e.g., Unity, Unreal Engine), we utilize a mesh-based representation
for our avatars.

2.2 Input Devices

Many approaches to avatar reconstruction use expensive multi-
camera rigs consisting of up to 100 high-end cameras to capture
images of a person simultaneously from all perspectives [1, 15,
28, 34, 39, 40, 47, 49]. Although these approaches yield visually
appealing results, the capture method is only available in well-
equipped laboratories due to the high cost of the scanner setup.
To reduce costs and make avatar reconstruction more accessible,
monocular cameras or smartphones could be used instead of multi-
camera rigs [3-5, 35, 52, 56, 57]. Early approaches by Alldieck et al.
[3, 4, 5] capture monocular videos of a subject and use silhouette
constraints to fit a mesh-based avatar. Fitting to the silhouette
of each frame makes the pipeline more robust, but reduces the
geometric quality as concave details do not influence the silhouette.
Wenninger et al. [56] use smartphone videos and a photogram-
metry-based template-fitting approach; however, their results do
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Figure 1: Point cloud from all images (left) and sub-scan
capturing the left part of the subject. The full point cloud
exhibits noticeable motion artifacts in both arms.

Figure 2: Comparison with Avatars for the Masses (A4M) [35]:
Input image (left), result from A4M (center), our result (right).
The A4M result displays a noticeably bigger arm than the
input image.

not match the quality of expensive camera rigs and require skilled
personnel to be used correctly.

More research has been conducted on avatars from monocular
capture in recent years. New approaches improve visual quality
[52, 57] but often require long training times (e.g. 2 days [52]).

Recently, Menzel et al. [35] proposed a method that, similar to
ours, aims for broad availability, accessibility, and usability. They
use a smartphone-based capture process and a mesh-based represen-
tation for their avatars. With a server-based design, their pipeline
is the first one enabling non-expert users to generate VR-ready
avatars using just a smartphone. Their results outperform those
of Gaussian-based methods in terms of reconstruction time, ren-
dering performance, and quality of novel pose animation. They
also surpass other mesh-based approaches regarding geometric
detail. Menzel et al. use a photogrammetry-based approach to fit
their avatars. This allows for fast and high-detailed reconstruction,
but point clouds generated using photogrammetry algorithms are
prone to artifacts when input images of a non-static object, e.g., a
human, are captured sequentially.

Because motions of the scanned object violate the photogram-
metry assumption (the object is static and does not deform), these
motions are visible in the resulting point cloud as noise. When
capturing a human standing in A-pose using a smartphone, this is
mainly observable in the arms, which potentially move throughout
the scan (see Figure 1, left). Artifacts arise especially around the
lower arms. Menzel et al. ignore this problem, incorporating these
artifacts into their final avatars (see Figure 2, center).
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Since we target similar requirements to Menzel et al., we employ
a mesh-based representation and an approach that uses photogram-
metry in combination with silhouette constraints to robustly recon-
struct high-detail avatars, even with motion during scanning. In
addition, we use inverse rendering to compute realistic textures.

3 Method

We combine the key ideas from different avatar reconstruction ap-
proaches into a single pipeline. We use photogrammetry to achieve
high geometric detail, silhouette constraints to improve the robust-
ness, and inverse rendering to generate a high-quality texture. To
ensure reliable point clouds, despite the subject moving during the
scan procedure, we introduce a new concept called sub-scans. We
divide the captured image sequence into smaller consecutive sub-
sequences. This reduces the subject’s motion in each subsequence,
resulting in point clouds with significantly fewer motion artifacts.

In the following, we first introduce our concept of sub-scans
(Section 3.1), define the loss functions used in our mesh optimization
(Section 3.2), provide an overview of our mesh fitting pipeline
(Section 3.3, see Figure 3), and finally present our inverse rendering
based texture generation (Section 3.4).

3.1 Sub-Scans

We use the i0S application provided by Menzel et al. [35] to capture
two separate scans: one of the body and one of the head. The app
captures 105 RGBD images in HEIC format (45 body images, 60
head images). All images are taken sequentially over a period of 2
minutes. For the body scan, the subject stands in an A-pose, which
makes it susceptible to arm movement. This is not the case for
the head scan, as the head is more rigid and easier to keep in the
same pose. Therefore, motion artifacts most likely arise in the body
scan. As this motion occurs over the full duration of the scanning
procedure, it has reduced impact over shorter time intervals. To
minimize the influence of motion, from the set of all body images
I, = {Iy,..., 145} we form m subsets I}, .. .,Ibm consisting of n
consecutive images such that

O[" =1, (1)
i=1

We refer to these subsets as sub-scans (see Figure 3, green and
yellow boxes). They form the basic concept for the following loss
functions. Note that we use an overlap of one image between two
consecutive sub-scans. For instance, in the case of m = 3 sub-
scans the 45 body images are split into sub-scans Ibl ={I,...,I15},
Ibz = {115, .. .,130}, and Ib3 = {130, ce ,145}.

In a first step, we generate point clouds for the body and head
scans using Agisoft Metashape [2]. We align both point clouds us-
ing landmarks detected with Mediapipe [33] in the input images,
similar to [35]. This ensures that the head scan matches the posi-
tion, orientation, and scaling of the head in the body point cloud.
Furthermore, for each sub-scan, we generate corresponding point
clouds P;, ..., P™. As shown in Figure 1, the sub-scan point cloud
(right) covers a smaller area of the scanned person, but contains
less artifacts than the full body point cloud (left), particularly in the
lower arm regions where movement occurred.
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In order to precisely fit our template to the sub-scans, we first
need to align the sub-scan point clouds. We use the camera calibra-
tion of the full-body point cloud as initialization for the sub-scan
photogrammetry. Despite the motion artifacts in the point cloud,
the information from the camera calibration remains valid because
large parts of the subject (e.g., legs, torso, and head) are static during
the capture. This results in the sub-scan point clouds being aligned
by construction.

3.2 Loss Functions

We use a template-fitting approach to reconstruct avatars. Our
template mesh, created by an artist, is defined by its N ~ 24k
vertex positions V = {vy,...,vnN}, joints Q = {q1,...,qs59}, and 51
blendshapes modeled after the ARKit blendshapes [6]. It can be
skinned using the standard linear blend skinning function:

skin(vy, 0) = Z wie g Tq(0) | vi. @)
qeQ
with v being a vertex position in homogeneous coordinates, 6 €
RY77 avector of 59-3 = 177 joint angles, Tq the affine transformation
matrix of joint g, wy 4 the skinning weight for the vertex vj and
joint q. Furthermore, we can adjust the template’s shape with a
PCA model built from the CAESAR database [46] which can be
controlled via parameters g € R1%:

V=p+ A- ﬂ’ (3)
where p is the mean mesh computed from the CAESAR database
and A € R3NVX15 is the PCA matrix.

We use different loss functions to match pose and shape of our
template to the sub-scans. In the following, we define the loss
functions used in our optimization and give a short description of
the influence of each loss.

3.2.1 Closest-Point-Correspondences. We build sets of closest-point
correspondences C; computed for each sub-scan Ibi from point
cloud Pli to our template mesh V with joint angles 6;. The set of vec-
tors of joint angles for all sub-scans is denoted as ® = {01, ..., 0p,}.
Each correspondence ¢ = (x¢,ve) € C; is defined by a point in
the point cloud x, € P;; and a point vc on a template triangle
defined by barycentric coordinates. We define the closest-point-
correspondence loss function as:

Lepe(V,05,Ci) = == > Ilxc —skin(ve, 0:) 5 (4)

ICil £ z
This loss measures the squared distance between our skinned tem-
plate and the point clouds. It serves two purposes: optimizing joint
angles 0; to match the pose of our template with the pose of the
subject in sub-scan i and non-rigidly deforming the vertex positions
V of our A-pose template model to match the shape in the point
cloud.

3.2.2  Silhouette Correspondences. We introduce a silhouette con-
straint to improve the robustness of the optimization, as proposed
in earlier approaches [3-5]. Similarly to closest-point correspon-
dences, we define silhouette correspondences. The silhouette is
defined by the outline of the subject in the input image. We find
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Figure 3: Overview of our sub-scan fitting with m sub-scans and sub-scan construction. We deform our template mesh using
PCA parameters § and vertex positions V to get a coarsely fitted model. This is posed with joint parameters 6; to bring the
model into the correct pose for each sub-scan. We can then minimize the losses Lcpc and Lg; for each sub-scan simultaneously to
compute the final geometry. After that, we minimize Licyx simultaneously for all sub-scans to generate the avatar’s final texture.
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Figure 4: Visualization of one silhouette correspondence. The
red dot is the camera center, the green line is the direction
vector d and the blue dot is the template vertex that will be
projected onto the ray. The shoulder of the template mesh is
outside of the mask.

the outline of the subject by first segmenting the input images to
separate the background from the subject and then computing the
contour of the segmentation mask using OpenCV [8]. To compute
the segmentation masks, we compared DeeplabV3 [13] and Seg-
ment Anything Model (SAM) [27]. We decided for SAM, as this
model produced more accurate results.

We find correspondences by projecting the vertices of our posed
model into each image, collecting all vertices outside of the seg-
mentation mask, and finding their closest point on the outline (see
Figure 4). The set of silhouette correspondences for sub-scan i is
denoted as S;. Si] is the set of correspondences for image j of sub-
scan i. As silhouette correspondences are calculated in image space,
a single correspondence s = (X, ds, V) € Sij is defined by a camera
center Xg, a direction vector dg from the camera center through the

image plane at the pixel coordinate of the contour point and the
vertex position v of the posed model. We define the silhouette loss
as:

L1(V,0;,S;) =
% Zn: Z SLJ “ (I - dsdz) (xs — skin(vs, 6;)) ”z 5)

Jj=1 SES{ i

where I is the 3 X 3 identity matrix. The loss measures the squared
distance between a skinned vertex position on the template and
the line defined by the correspondence. This is used to restrict
the template model to remain inside the visual hull defined by the
masks of the input images.

3.2.3 Regularization. Similar to other template fitting approaches,
we use a Laplacian-based regularization to penalize deviation from
the template’s curvature (i.e. bending):

1

LA(V)= ———
A (V) Sy A

D AVIIAV - RAT 3, (6)

vev

where Av is the cotangent Laplacian of the deformed vertex v, RAV
is the rotated cotangent Laplacian of the undeformed vertex v, and
Ay is the Voronoi area associated with vertex v [7].

3.3 Coarse-to-Fine Fitting

After defining the sub-scan-based loss functions, we now give a
detailed description of our fitting process. The sub-scan point clouds
cover less area than the full-body point cloud or miss parts of the
scanned subject (e.g. arms). Therefore, we use the full-body point
cloud, generated from all body images 7}, to initialize the template
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model. After initialization, we can use the sub-scans to finely fit
the model’s geometry.

3.3.1 Template Initialization. After aligning the head, body, and
sub-scan point clouds, we align our template to the point clouds
by computing a conformal transformation to match landmarks de-
tected with OpenPose [10] and positions of the template’s joints
Q. Depending on the number of sub-scans, the point clouds only
contain areas seen from few directions and thus lack volume infor-
mation. This makes approximating proportions of body parts much
more difficult. To compensate for this, we use the full-body point
cloud for initialization, as large parts are static and can be used to
coarsely match the shape of the body.

We minimize the distance between joint positions and the de-
tected landmarks using inverse kinematics [9] to get a first approx-
imation of the subject’s pose. The pose and shape are then further
refined by alternately optimizing Lcp. with respect to joint angles
0; as well as vertex positions V through the parameters g of our
PCA model (see Figure 3, bottom to center).

3.3.2  Coarse Body Fitting. Accurate pose estimation, which is cru-
cial for fine-scale sub-scan fitting, requires that the template and
subject share similar body proportions. Our PCA shape model,
trained on minimally clothed CAESAR scans, cannot explain the
extra volume introduced by loose garments. After the initialization,
we perform a coarse non-rigid fit of the model to the full-body
point cloud. This lets the surface expand to match the clothing,
providing a better initialization for subsequent pose refinement.
This is done by minimizing Lcpc with respect to vertex positions
using correspondences C. We additionally fine-fit to the head point
cloud, as it does not contain motion-induced artifacts.

We use Lp to penalize deviation from the template model to
ensure a smooth surface. Thus, the fitting loss is defined as

Lge (V. 0) = chc (V.8,C) + LA (V). (7)

This optimization is performed iteratively, with the regularization
weight Ap being gradually reduced. As the full-body point cloud
may contain motion-induced artifacts, which are incorporated into
the fitted mesh when the regularization weight becomes too low, we
fit with A4 in the range from 1 to 10~%. In contrast, we fit the head
point cloud until Ap reaches 1072, as it does not contain motion-
induced artifacts. We use iterative block coordinate descent for
optimization.

3.3.3  Fine-Scale Sub-Scan Fitting. Although the point clouds of the
sub-scans are aligned in the same coordinate system, the poses of
the sub-scans do not match. Similar to the full-body point cloud,
we need to adjust the pose per sub-scan. We therefore optimize
Lepe with respect to © (see Figure 5).

After adjusting the model’s pose 0; to each sub-scan, we fit the
model using non-rigid registration by minimizing Lepc and Ly with
respect to V over all sub-scans (see Figure 3, left and right). Our
overall fitting loss is then defined as:

m

L (V) = = " [Lepe(¥V,01,C) + L (V. 00,59 + AaLa(¥). (8)

i=1

VRST 25, November 12-14, 2025, Montreal, QC, Canada

Figure 5: The template’s pose is fitted to each point cloud in-
dividually while not differing too much from the first inital-
ization. Left: Sub-scan 3, Right: sub-scan 5. Slight movements
of the subject’s right arm are noticeable. The moving right
arm is marked with red.

<1
<

Figure 6: Original masked image (left), rendered image (mid-
dle), weighting by view direction (right).

Similarly to the coarse body fitting, this loss is optimized using
iterative block coordinate descent and again, we gradually reduce
Aa from 1 to 10~°. This ensures the same level of detail as for the
head scan. Additionally, we transfer the template’s blendshapes to
the fitted model via deformation transfer [35]. This completes the
geometry fit of our pipeline.

3.4 Texture Generation

After fine-scale fitting the avatar’s geometry, we compute a high-
resolution texture using an inverse rendering framework. We define
a loss function between our rendered mesh and the input image as:

Ltex(Itex) Lin, Iren) =
Leh (Tin, Iren) + Lsstv (Tins Iren) + Lv (TItex)s )

where Iren is a rendered image of the fitted mesh (see Figure 6, cen-
ter), Iiex is the texture of the mesh, Iy, is the segmented input image
with white background (see Figure 6, left), L¢y, is the differentiable
Charbonnier L; loss [11], Lsspv is the structural similarity index
(SSIM) [54], and Ltv is the total variation loss (TV). We additionally
weight Lssrv and Loy, per image by view-direction. The weighting
is used to downweight parts of the image that do not face the cam-
era and are thus less likely to be accurate. The loss function for
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texture optimization over all sub-scans is then defined as

m n
Ltex (V, Itex) = Z Z Ltex (IteXs I}: ‘II(V, Ltex, 91)) > (10)

i=1 j=1

where Ij. is the j-th image of the i-th sub-scan, ¥(V, Iiex, 6;) is a
function to render the fitted mesh V with texture Iiex, posed with
0;, on a white background.

We begin the texture generation by using Metashape to generate
a texture based on our fitted geometry and the complete set of
body images ;. However, due to subject movement, this initial
texture often contains artifacts, such as parts of the background.
This texture is then refined using the inverse rendering framework
provided by PyTorch3D [44] - a library for deep learning with 3D
data. We optimize our loss Liex by minimizing the difference be-
tween our rendered avatar and the input images through adjusting
the texture Itex. Because scans are performed in environments with
uncontrolled lighting conditions, lighting and material parameters
are unknown. Therefore, the avatar is rendered without lighting,
which leads to baked-in lighting in the texture. This optimization
takes advantage of the SSIM, TV, and differentiable Charbonnier
Ly loss functions from Kornia [45]. For optimization, we use the
Adam optimizer [26]. Afterwards a head texture is generated via
Metashape from the set of head images and merged with the body
texture, similar to [35].

4 Evaluation

We compare our approach against three other recent smartphone-
based avatar reconstruction methods. RMAvatar [43] and iHuman
[41] are 3DGS-based approaches, Avatars for the Masses (A4M) [35]
is a mesh-based reconstruction. Our avatars consist of a set of
rigged triangle meshes with 51 blendshapes and are about 25MB
of size in GLB format including texture. In this section, we show
that while 3DGS-based avatar reconstruction methods are excellent
in reconstructing views and poses similar to training data, they
struggle with creating novel poses and views. This, however, is
crucial for VR applications as users control their avatar, creating
unpredictable poses and views.

All methods use monocular cameras/smartphones to capture the
necessary data for their algorithms. A4M and our approach use
photos that are taken by circumambulating a person standing in
A-pose. To capture the images, we used the i0S application from
A4M. RMAvatar and iHuman use short videos as input, where the
subject is moving in front of the camera. We followed the input
protocol suggested by the authors and recorded a short 1440 x 1440
video of a person rotating in A-pose in front of a static smartphone.
iHuman’s and RMAvatar’s provided reconstruction pipeline ex-
pect scans in PeopleSnapshot format with refined SMPL [32] poses
through Anim-NeRF. We therefore convert the videos by using
VideoAvatars [4] and Anim-NeRF [42] and subsequently process the
resulting data by the provided scripts of RMAvatar and iHuman, as
proposed by the authors. We recorded the videos for iHuman and
RMAvatar with the same iPhone that we used to capture the input
images for A4M and our approach. We also tried to train RMAvatar
and iHuman with our input images, using the same preprocessing
pipeline as for the videos. However, this resulted in reconstructions
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of lower quality. Therefore, for a fair comparison, we used the input
data that resulted in the best reconstructions for each method.

4.1 Qualitative Evaluation

Figures 7 and 8 show the results of iHuman [41], RMAvatar [43],
Avatars for the Masses (A4M) [35], and our method. Figure 7 shows
the reconstructions in a pose of the training sequence. For the
female subject! all methods created plausible shapes/geometry. Re-
garding the color/texture the results are different. iHuman has pro-
duced visible turquoise artifacts at the arms and the result is blurry,
e.g., at the legs. The other methods computed better colors/textures,
with RMAvatar producing the most photorealistic results. For the
male subject, the result is mostly similar. iHuman produced blurrier
results than RMAvatar and our method (e.g, in the face). However,
A4M failed to correctly reconstruct the person’s geometry, with
severe artifacts on both arms. The model’s right arm contains a
partial image of a car tire/headlight from the background. These
artifacts result from motion during scanning. Note that the male
subject was not instructed to keep his arms still, highlighting the
effect of motion on reconstruction. A4M assumes that during the
photo capture no movement occurs, leading to severe deformations
if the assumption is violated.

Figure 8 shows two subjects in a novel pose that was not part
of the training sequence. A4M’s and our results produce plausible
geometries and sharp textures, although the texture of our result
shows fewer artifacts, e.g., the lower arm of the bottom subject. In
contrast, the results of iHuman and RMAvatar are blurrier than
in the training pose and show strong deformations in the arms,
legs, and face, resulting in the loss of identifiable features. These
differences between the training pose and the new pose result from
the 3DGS reconstruction method. In contrast to the purely mesh-
based approaches, the 3DGS-based approaches incorporate view-
dependent material appearance through spherical harmonics. This
is usually a key advantage for modeling fine details (e.g. hair); in this
case, however, it becomes a disadvantage due to the lack of training
data for the novel pose and novel view. Our experiments show that
a short smartphone video is not sufficient to capture enough views
to create novel poses faithfully. However, this is a key necessity
for VR usage, as users control their avatars, leading to a variety of
novel views and poses. Therefore, current smartphone-3DGS-based
methods cannot be used to generate VR-ready avatars. More results
and edge cases are shown in the supplementary material and video.

4.2 Quantitative Evaluation

We quantitatively evaluate our avatars by reprojecting them onto
the masked input images. The masked background is replaced with
white and metrics are evaluated by comparing the rendered and the
input image. We report SSIM, peak-signal-to-noise ratio (PSNR),
intersection over union (IoU), and computation time results in
Table 1.

PSNR and SSIM measure the reprojection accuracy of the avatar
on RGB images, thereby evaluating geometry and texture recon-
struction quality. IoU in contrast is evaluated on binary images
therefore measuring the difference between the rendered avatar’s
silhouette and the silhouette of the scanned person. To compute

IThe subject asked to remain anonymous
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Figure 7: Comparison of the different avatar reconstructions in A-pose from the training sequence. The results from iHuman
are blurry and can contain differently colored artifacts, RMAvatar produces the most photorealistic results, A4M contains
visible motion artifacts in the arms. Our result is geometrically accurate and has a sharp texture. It does not contain clearly
visible motion artifacts, although it is also a purely mesh-based approach.

Metric ‘ iHuman ‘ RMAvatar ‘ A4dM ‘ Ours
SSIM T 0.957 0.983 0.937 0.948
PSNR T 25.677 31.780 23.747 24.395
IoU T 98.90 % 99.21% 99.04 % 99.24 %
Time | 25h 26.5h 21 min 19 min

Frame RateT | 161 fps 115 fps 4615 fps | 4615 fps

Table 1: Comparison of SSIM, PSNR, IoU errors, computation
time, and rendering performance (fps) for three state-of-the-
art avatar reconstruction methods and our method averaged
over 11 subjects (see supplementary material, subjects 1-11).
Best values are in bold. In SSIM and PSNR the 3DGS-based
iHuman and RMAvatar are more accurate. Our method is the
most accurate with respect to IoU. Ours is the fastest, with
19 min of processing time. iHuman and RMAvatar need more
than 25h and A4M takes slightly longer with 21 min. We
improve upon A4M in every metric. iHuman and RMAvatar
have considerably lower rendering performance than A4M
and ours.

the metrics, we used OpenCV’s [8] quality module. Compared to
3DGS-based approaches, our avatars achieve similar image metrics:
Our SSIM and PSNR are slightly below iHuman’s and considerably
lower than RMAvatar’s but we outperform A4M in both metrics.
Our method achieves the highest IoU, with RMAvatar close behind.

Our pipeline was run on a workstation equipped with an AMD
Ryzen 7950X CPU and a Nvidia RTX 4090 GPU. The preprocess-
ing and training of iHuman and RMAvatar were performed on a
compute server with an AMD Ryzen Threadripper PRO 5975WX
CPU and three Nvidia RTX6000 GPUs. Avatars from A4M were
computed by the provided Mac Studio server (M1 Ultra 20 core
CPU and 64 core GPU). We report computation times including
all preprocessing steps and the actual training/fitting of the differ-
ent pipelines to compare the full duration from scanning to using
the avatars. Rendering speed was evaluated on a Nvidia RTX 4090
GPU powered machine in 2160 X 2160 resolution. Over 11 subjects,
RMAuvatar took the longest, with average computation times of 26.1
hours. This includes 25 hours of preprocessing with Anim-NeRF
and VideoAvatars, as well as around 1.1 hours of additional train-
ing time. As iHuman uses the same preprocessing, it shares the 25
hours of preprocessing time but only adds around two minutes of
extra training time. Results from A4M were received after around
21 minutes, while ours took around 19 minutes when using 3 sub-
scans. Ours therefore outperforms every compared approach in
processing time. Rendering is 28—40X faster than the 3DGS-based
methods and matches our previous approach A4M, since both use
the same template model. The iHuman and RMAvatar avatars con-
sist of approximately 200k and 120k Gaussians, respectively, while
A4M and our mesh-based avatars have around 24k vertices and 45k
triangles.

Overall, our results are slightly worse in SSIM and PSNR com-
pared to RMAvatar and iHuman but improve on IoU. However,
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Figure 8: Comparison of the different avatar reconstructions in a novel pose. All resulting avatars can be animated using a
precomputed animation but the results of iHuman and RMAvatar have visible artifacts in parts that were not seen (from this
angle) in the training sequence (e.g. face, arm, or leg). In contrast, the purely mesh-based approaches do not produce these

noticeable artifacts in geometry.

as shown in Figure 8, ours do not exhibit novel pose artifacts in
contrast to the 3DGS-based approaches. Our pipeline runs slightly
faster than A4M, while iHuman and RMAvatar take more than a
day to finish the reconstruction. Compared to A4M, our results
exhibit no motion artifacts and improve on reconstruction accuracy
in every metric measured.

4.3 Ablation Studies

In this section, we show the influence of the number of sub-scans
and the usage of silhouette constraints on the fitting quality.

4.3.1 Sub-Scans. First, we show the impact of using sub-scans by
varying the number of sub-scans from two to five with one image
overlap between two consecutive sub-scans. As we have 45 images
for the body, higher amounts of sub-scans would result in using
fewer than seven images per sub-scan, which are too few perspec-
tives to cover enough area of the scanned person in each sub-scan.
Figure 9 shows how the usage of sub-scans influences the pose
alignment of the avatar to the input images and the geometric ac-
curacy. The subject’s right arm is misaligned and malformed when
using no sub-scans (left). Using two sub-scans greatly improved
the alignment (center), and with five sub-scans, the pose and ge-
ometry of the scanned person are matched almost perfectly (right).
The geometric detail of the model is preserved in most regions.
Cloth detail and skin structure are local features that are recon-
structed even when using partial point clouds from five sub-scans.
This is due to the fact that increasing the number of sub-scans
increases the likelihood of getting motion-free sequences. Our per
sub-scan aligned template fitting is then able to reconstruct pose

Figure 9: Comparison of avatar renderings in scan pose over
input images (transparent) using 0 (left), 2 (middle) and 5
(right) sub-scans. An increasing number of sub-scans im-
proves pose alignment and geometric accuracy (right arm).

and geometry faithfully. This is also visible in the texture. Without
sub-scans, the texture of the subject’s right arm contains areas of
the background of the input images. With sub-scans, this issue is
significantly reduced.

Although the error-reduction effect is generally observed, the
data indicate that using too many sub-scans can increase uncer-
tainty. When increasing the number of sub-scans from two to four,
the average PSNR increases from 25.35 to 25.58. However, at five
sub-scans PSNR falls to 25.49, because the effective overlap per
scan becomes too small. Similar effects can be observed with SSIM
and IoU. Data from our eleven scanned subjects suggest that three
to four sub-scans produce the best results. A bigger amount of
sub-scans can help in cases of exaggerated motion (e.g. Figure 9),
however with proper instructions three sub-scans are sufficient
to reduce the impact of motions in general. As computation time
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Figure 10: Without silhouette constraints (red box) on in-
put image (left), with silhouette constraints on input image
(middle). The right image shows a comparison of both avatar
reconstructions: lower arm with silhouette constraints (red
box) on the result without silhouette constraints. The sil-
houette constraint restricts the geometry to the visual hull
defined by the masks, leading to a more realistic reconstruc-
tion.

AN

Figure 11: Texture-map comparison: Metashape (left)
and graph-cut (center) textures from all images versus
our inverse-rendering texture generated from sub-scans
(right). Only the sub-scan version removes background
bleed-through and stitching artifacts, yielding a smooth, pho-
torealistic texture.

increases with the number of sub-scans, we recommend the usage
of three sub-scans for a one minute body scan.

4.3.2  Silhouettes. We use silhouette constraints to robustify the
fitting process in our pipeline and reduce the influence of motions
during the scan procedure even further. Figure 10 shows the influ-
ence of silhouette constraints on the reconstruction of the lower
arm region. We can see that the proportions of the arms are bet-
ter matched when using silhouettes. While the use of sub-scans
already eliminates most artifacts, silhouette constraints lead to a
better alignment with the original shape and position of the body.
The choice of silhouette weight Ag; is crucial. When working with
exaggerated motions the overlap of silhouettes becomes extremely
thin. This leads to arms becoming thinner the higher Ay is chosen.
However our experiments show, that 107% is an appropriate weight
for all our scans. Silhouette constraints have a positive effect on
every image metric. This effect is more pronounced when dealing
with a lot of motion. On average PSNR improves from 25.2 to 25.7.
SSIM also improves from 0.959 to 0.960.

4.3.3 Texture Generation. We compare texture generation from
all images with our inverse rendering texture generation from the
sub-scans (see Figure 11). From all images (body and head scan), we
compute textures using Metashape (left), a graphcut algorithm [56]
(center), and our inverse rendering (right). The Metashape and
graphcut textures contain visible dark artifacts and/or parts of

VRST 25, November 12-14, 2025, Montreal, QC, Canada

the background. In contrast, our texture does not contain these
kinds of artifacts. Due to the pose alignment through the sub-scans,
the influence of motion is reduced, as the fitted avatar’s model is
aligning properly with the input images. This results in a smooth,
realistic and coherent texture.

4.4 Limitations

Our approach reduces motion-induced errors in photogrammetry-
based, template-fitting avatar reconstruction. Some limitations re-
main:

Imprecise Masks Silhouette constraints robustify the corres-
pondence-driven template fitting algorithm. A necessity for
the successful usage are accurate segmentation masks of the
scanned subject. If the masks are too imprecise (e.g. missing
limbs), these constraints may create additional artifacts.

Motion Our approach reduces the problem of motion-induced
errors, but still assumes the person to be standing in A-pose,
without intentional motion. While our presented method
reduces the influence of slow motion, fast movements during
a sub-scan can still lead to artifacts.

Clothes and Hair Clothes, skin, and hair are all represented
by the same mesh. This simplification can lead can lead to
artifacts for loose clothing or long hair, in particular during
animations (see supplementary material/video).

5 Conclusion

We presented a novel smarpthone-based avatar reconstruction
method that advances the state of the art in producing faithful
and VR-ready full-body avatars. By utilizing silhouette constraints
and a new sub-scan strategy, paired with inverse rendering texture
generation, we outperform recent mesh- and 3DGS-based avatar
reconstruction methods, in terms of computation time, accuracy,
and animation quality. Our avatars are view-consistent and com-
patible with common game engines and VR applications without
further postprocessing to faithfully represent the users.

Hair and clothing could be improved by using body-part seg-
mentation, which would allow separate fitting to the skin mesh.
This approach could also reduce motion restrictions by enabling
to fit rigid parts individually. An in-headset user study could be
conducted to validate the improvements for VR applications. Unlike
existing 3DGS-based methods, we would like to combine textured
mesh- and 3DGS-based rendering to improve the rendering quality
of fine details of mesh-based avatars.
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