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Figure 1: Standard differential operators [MDSB03] fail for degenerate or near-degenerate elements, shown here for geodesic distances
[CWW13] on a model generated with VoroMesh [MKO∗23] (a) and for gradient-based bending [YZX∗04] of a cylinder with degenerate
mid-section (c). In contrast, our proposed differential operators work robustly in these challenging cases (b, d).

Abstract
Many geometry processing algorithms rely on solving PDEs on discrete surface meshes. Their accuracy and robustness cru-
cially depend on the mesh quality, which oftentimes cannot be guaranteed – in particular when automatically processing geome-
tries extracted from arbitrary implicit representations. Through extensive numerical experiments, we evaluate the robustness of
various Laplacian implementations across geometry processing libraries on synthetic and “in-the-wild” surface meshes with
degenerate or near-degenerate elements, revealing their strengths, weaknesses, and failure cases. To improve numerical stabil-
ity, we extend the recently proposed tempered finite elements method (TFEM) to meshes with strongly varying element sizes,
to arbitrary polygonal elements, and to gradient and divergence operators. Our resulting differential operators are simple to
implement, efficient to compute, and robust even in the presence of fully degenerate mesh elements.

CCS Concepts
• Mathematics of computing → Discretization; • Computing methodologies → Mesh geometry models;

1. Introduction

The discrete Laplace-Beltrami operator is one of the most ubiqui-
tous operators in geometry processing, being employed in smooth-
ing, distance computation, deformation, and many more [BKP∗10].
It can be used to model many physical phenomena on two-
manifolds, such as heat diffusion or wave propagation. Because
of its geometric importance, there exists much research regard-
ing properties of the operator [WMKG07] and many different dis-
cretization schemes for triangular and polygonal surfaces [Dzi88,
PP93, MDSB03, BS07, SC20, BB23].

With the emergence of deep learning, the need for unsuper-
vised processing of massive amounts of data has become a preva-

lent topic. However, the quality of the data to be processed cannot
always be guaranteed. For instance, when processing datasets of
meshes, even the most basic preconditions, such as non-degenerate
geometry, can often not be guaranteed [ZJ16]. Furthermore, learn-
ing implicit representations of shapes [PFS∗19,BRV∗24] can yield
unpredictable results when extracting meshes with Marching Cubes
[LC87], resulting in them not necessarily conforming to the precon-
ditions of typical geometric algorithms.

To investigate the resilience of modern general-purpose geom-
etry processing libraries to degenerate geometry, we benchmark
the robustness of the standard cotangent Laplace-Beltrami dis-
cretization [PP93, MDSB03] as implemented in multiple geometry

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0009-0004-1207-7205
https://orcid.org/0000-0001-9954-120X


2 of 9 S. Wagner & M. Botsch / Robust Discrete Differential Operators for Wild Geometry

processing libraries [BSBK02, SC∗19, SB23, The24, Vis23, Liv19,
L∗25, JP∗18] and distill a robust implementation. Furthermore, we
go beyond linear FEM and review alternative, more robust Laplace
discretizations. We eventually build upon the recent tempered finite
elements method (TFEM) [QKL∗24], which we extend

• to be locally and globally scaling invariant, thereby being appli-
cable to irregular, non-homogeneous meshes,

• to a consistent discretization of gradient and divergence oper-
ators, thereby enabling a wider range of geometry processing
algorithms, and

• to work for general polygon meshes [BHKB20], thereby lifting
the restriction to pure triangle meshes.

Our proposed operators act as a drop-in replacement of the stan-
dard cotangent discretization, are easy to implement, efficient to
compute, and robustly work when all others fail. The code for this
benchmark and the improved differential operators is available at
https://github.com/sdwagner/wildDDG.

2. Related Work

Laplacians on Triangle Meshes Discretizing smooth differential
operators, such as the Laplace-Beltrami operator, on discrete sur-
faces has been an active area of research in the last decades. Each
approach tries to retain crucial properties of the smooth operators,
such as linear precision, symmetry, or locality [WMKG07]. The
most ubiquitous discretization on triangle meshes, the cotangent
Laplacian, can be derived using many different techniques, such
as the linear finite elements method (FEM) [Dzi88], discrete exte-
rior calculus (DEC) [CdGDS13], minimal surfaces [PP93], or mean
curvature flow [DMSB99]. Although it fulfills most of the desired
properties, it does not always satisfy the maximum principle, as
indicated by negative cotangent weights, which can result in non-
physical behavior or flipped faces in discrete harmonic parameteri-
zations [FH05].

To guarantee the maximum principle, Bobenko and Springborn
define a Laplacian on the intrinsic Delaunay triangulation (iDT)
[BS07], which is built using intrinsic edge flips. These edge flips
guarantee that the input geometry stays the same, only combi-
natorially changing the mesh, while providing positive cotangent
weights. This can be efficiently calculated and stored using, e.g.,
the signpost data structure [SSC19]. To improve upon the iDT
Laplacian, Sharp and Crane [SC20] generalize it to non-manifold
triangle meshes, constructing a manifold shell around it and then
computing the iDT Laplacian. They further propose intrinsic molli-
fication to reduce the impact of (near-)degenerate geometry, intrin-
sically elongating all edges until every triangle is non-degenerate.

Numerical Stability on Triangle Meshes Investigating the nu-
merical stability of linear FEM has been a key research inter-
est, with several works suggesting error bounds, quality measures
[She02, SBMS23] and angle conditions [Zlá68, BA76] to estimate
the error of FEM schemes via the shape of the underlying trian-
gles. Generally, triangles with small angles (needles), large angles
(caps), and very small areas should be avoided. Yet, the small angle
condition derived by Zlámal [Zlá68] and the large angle condition
derived by Babuška and Aziz [BA76] were shown not to be nec-
essary conditions for FEM convergence [BA76,HKK12] and using

needle elements can in some cases be beneficial for solving PDEs
with highly anisotropic coefficients [Rip92]. Still, avoiding small
and large angles can have other benefits related to the stiffness ma-
trix conditioning, gradient error convergence [She02], or ensuring
the maximum principle [WMKG07]. Furthermore, Kučera [Kuč16]
shows that large clusters or bands of degenerate elements, i.e.,
many adjacent degenerate elements forming a strip, can become
problematic for FEM performance.

Handling Degenerate Triangles As poorly shaped triangles are
detrimental for many applications, several strategies exist to cope
with these elements. While there are many remeshing strategies
to improve the quality of triangular meshes [BKP∗10, Chapter 6],
most approaches change the complexity of the mesh or shift ver-
tices, resulting in a need for non-trivial interpolation of vertex-
based quantities. Furthermore, applying global remeshing can be
very expensive depending on the quality criterion [SC20]. Another
possibility to cope with poorly shaped elements is to use higher-
order FEM approaches, as they are better suited for these ele-
ments [SHD∗18]. Schneider et al. propose to adaptively increase
the order of the FEM bases per element based on an a priori error
estimate. While this approach can significantly reduce the error in-
troduced by poorly shaped elements, the required computation time
scales with the degree of degeneracy and results in the need to solve
a considerably larger linear system. Furthermore, very degenerate
triangles can still become problematic. In a recent paper, Quiriny et
al. [QKL∗24] propose to modify the standard FEM scheme and in-
troduce the tempered finite elements method (TFEM), reducing the
impact of multiple adjacent cap-like elements to the convergence of
FEM by applying clamping to the Jacobian determinant of the geo-
metric map used when defining the stiffness matrix. This approach
and our extensions will be discussed in greater detail in Section 4.

Laplacians on Polygon Meshes When extending the scope to in-
clude arbitrary two-manifold polygon meshes, there exist several
different discretizations, since there is no canonical definition of a
surface, as is the case for triangle meshes. We refer to the compre-
hensive survey of Bunge and Botsch [BB23] for more details on the
different approaches. The Laplacian of Bunge et al. [BHKB20] pro-
vides a relatively straightforward approach, defining a virtual trian-
gulation and using the cotangent Laplacian as a basis to define the
polygonal operator. In a follow-up paper, Bunge et al. [BBW∗24]
improve the numerical stability of this polygonal operator. We will
discuss how we adapt these approaches to generalize our TFEM
discretization to polygons in Section 4.3.

3. Laplacian on Triangle Meshes

This section provides a short review of the basic definitions re-
garding the cotangent Laplacian on triangle meshes [Dzi88, PP93,
DMSB99]. Let M = (V,T ) be a triangle mesh consisting of ver-
tices V and triangles T with their respective cardinalities |V| and
|T |. For each vertex vi ∈ V , we define a position xi ∈ R3. In linear
FEM, the strong form of the cotangent Laplacian

L =−M−1S
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can be defined by using a mass matrix M ∈ R|V|×|V| and stiffness
matrix S ∈ R|V|×|V|. The matrices are defined as

Si j =



−
cotαi j + cotβi j

2
if v j ∈N (vi),

− ∑
vk∈N (vi)

Sik if i = j,

0 otherwise,

(1)

Mi j =



|ti jk|+ |ti jl |
12

if v j ∈N (vi),

∑
vk∈N (vi)

Mik if i = j,

0 otherwise.

(2)

Here, αi j and βi j are the two angles opposing the edge (vi,v j),
|ti jk| and |ti jl | are the areas of the triangles adjacent to this edge,
and N (vi) refers to the one-ring vertex neighborhood of vertex vi.
Note that the mass matrix is typically lumped by summing up the
entries per row, resulting in the usual barycentric mass matrix.

Since the continuous Laplacian is defined as divergence of gradi-
ent, we can also decompose the stiffness matrix into the respective
gradient and divergence matrices G ∈ R3|T |×|V|, D ∈ R|V|×3|T |.
The gradient matrix can be defined blockwise using the matrices
Gi ∈ R3×|V| for each triangle ti = (v j,vk,vl) ∈ T according to

Gi
: j =


(xl −xk)

⊥

2|ti|
if v j ∈ ti,

0 otherwise,
(3)

D = G⊤MD, (4)

where v⊥ denotes a counterclockwise rotation of the vector v by
90° in the triangle plane and MD ∈ R3|T |×3|T | is the diagonal di-
vergence mass matrix consisting of the triangle areas, each repeated
three times. Multiplying these definitions results in the cotangent
stiffness matrix S = DG, and thus L =−M−1DG.

3.1. Ways to Compute the Laplacian

While calculating the corner angles of the triangles and applying
the cotangent is the easiest way to compute the cotangent weights,
several mathematical identities can make the calculations more per-
formant and numerically stable. This section investigates the dif-
ferent ways to calculate the cotangent Laplacian present in modern
geometry processing libraries and compares their robustness. We
focus exclusively on general-purpose libraries, as these are com-
monly used to process geometric data.

Trigonometry Trigonometry is still the most widely used method
of calculation, but there are several different variations. Open-
Mesh [BSBK02], Geogram [L∗25], VCGLib [Vis23], and Cino-
Lib [Liv19] each first calculate the corner angles using the standard
cosine identity

αi = arccos

(
⟨ei j,eik⟩∥∥ei j
∥∥ · ∥eik∥

)
(5)

at vertex vi and triangle ti jk = (vi,v j,vk), where ei j = x j − xi is
the edge vector from vertex vi to v j. Following this, there ex-
ist several variants to compute the cotangent using this angle.
For instance, OpenMesh and Geogram compute the cotangent as
cotαi = 1/ tanαi, while VCGLib uses the equivalent expression
cotαi = cosαi/sinαi. CinoLib, on the other hand, computes the
cotangent via the identity cotαi = tan(π/2−αi).

Extrinsic Computation Expanding the definitions of the trigono-
metric functions to vector calculus leads to

cotαi =
⟨ei j,eik⟩∥∥ei j × eik

∥∥ , (6)

which is the definition used by CGAL [The24] and geometry-
central [SC∗19] to calculate the cotangent weights.

Intrinsic Computation As the cotangent Laplacian is an intrin-
sic operator, only depending on edge lengths and connectivity, the
above equation can also be rewritten further:

⟨ei j,eik⟩=
a2 +b2 − c2

2
, (7)∥∥ei j × eik

∥∥= 2|ti jk|= 2
√

s · (s−a) · (s−b) · (s− c), (8)

with a =
∥∥ei j

∥∥, b = ∥eik∥, c =
∥∥e jk

∥∥, and s = a+b+c
2 . This com-

putation is used by PMP [SB23], libigl [JP∗18], and by geometry-
central [SC∗19] when explicitly using intrinsic meshes. To improve
the numerical stability of the area computation, libigl further uses a
sorted variant of Heron’s formula (8), such that a ≥ b ≥ c [Kah97].

Clamping Although most libraries do not clamp any weights, sev-
eral options exist to remove unwanted entries from the stiffness
matrix. CGAL and PMP ignore cotangent computations whenever
the area of the corresponding triangle is zero to avoid dividing by
zero. This improves stability in the case of truly degenerate faces.
In addition, PMP and CinoLib implement another approach, the
clamping of negative entries, which is a sufficient condition to guar-
antee the maximum principle, but might result in the violation of
other properties (e.g., linear precision) [WMKG07]. While PMP
provides this optionally and per matrix entry, CinoLib clamps each
cotangent computation to 10−10, thus resulting in a more conser-
vative and less correct result.

Building our own We also condense the above-mentioned meth-
ods into one extrinsic implementation (6) and one intrinsic imple-
mentation (7), (8). Generally, we ignore all cotangent computations
on zero-area triangles to prevent division by zero. Furthermore, we
use the sorted version of Heron’s formula (8) in our intrinsic imple-
mentation.

3.2. Comparison

To assess the robustness of the different implementations to poorly
shaped and near-degenerate elements, we solve several kinds of
PDEs on various mesh types and evaluate the deviation from the
respective true analytical solutions.
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(a) Grid with two needles (b) Grid with single cap (c) Grid with needle band (d) Grid with cap band (e) Unstructured grid

(f) Sphere with needle band (g) Sphere with cap band

Figure 2: The different types of triangular test meshes that were used in the numerical benchmarks.

Experimental Setup To provide a stable testing ground, we build
a synthetic dataset of relatively regular meshes, each including iso-
lated, banded, or clustered degeneracies, as seen in Figure 2. These
meshes can be adjusted to increase the number of elements (i.e.,
increase the grid resolution or number of vertices) and degree of
degeneracy (i.e., smaller/bigger angles or degree of compression).
We choose these types of degeneracies to simulate typical points of
failure found in “in-the-wild” meshes, as seen in Figure 1, 5, and 4,
while keeping a simple mesh shape. They are categorized into the
following types:

(a) The grid with two needles contains two adjacent needles in the
middle of the mesh. We adjust the edge length between the nee-
dles to be between 1 and 10−30 times the original edge length.

(b) The grid with single cap contains one cap in the middle and
is similar to the previous case, but we decrease the distance be-
tween the vertex and edge instead.

(c) The grid with needle band contains multiple bands of needles.
The angles can be adjusted by increasing the vertical compres-
sion (i.e., shifting the vertices to the middle).

(d) The grid with cap band contains multiple bands of caps and
single needles at the edges. The angles can be adjusted similarly
to the previous case.

(e) The unstructured grid contains randomly sampled vertices on
[−1,1]2, which are triangulated via the Delaunay triangulation.
Afterwards, vertices are shifted to produce needles and caps in a
ratio of 1:1. The degree of degeneracy can also be adjusted as in
the first two cases.

(f) The sphere with needle band contains the grid with needle band
wrapped into a sphere. The top and bottom vertices are designed
to have a high degree.

(g) The sphere with cap band is analogous to the previous one us-
ing the grid with cap band.

We conduct the following experiments on several of these mesh
types, each adjusted in vertex count and degree of degeneracy, re-
sulting in hundreds of datapoints per experiment. As such, we first
individually calculate a root mean squared error (RMSE) between
the computed solution s ∈ R|V| and analytical reference solution
a ∈ R|V| per mesh M= (V,T ), as

RMSE(µ,e,M) =

√
1
|V| ||s(µ,e,M)−a(e,M)||22. (9)

Here, µ and e are the current method and experiment, respectively.
These per-mesh errors are then consolidated into a per-method
mean relative error

E(µ,e) =
1
M

M

∑
i=1

RMSE(µ,e,Mi)

RMSE(ρ,e,Mi)
, (10)

over the meshes {M1, . . . ,MM} in relation to our recommended
method ρ (i.e., the D-TFEM approach introduced in Section 4.4).
This results in one measure per method and experiment, indicating
whether the method performs better (<1) or worse (>1) than our
recommended approach. Further, as we encounter non-solvable lin-
ear systems and very high errors, we also report a NaN (not a num-
ber) percentage for non-solvable systems, and a failure percentage,
meaning that the error of this method is at least three orders of
magnitude higher than that of our recommended approach. The re-
sulting mean relative error is only computed on the remaining data.
We always use the same standard barycentric mass matrix.

Poisson Equation on Planar Grids To investigate the conver-
gence property [WMKG07] of the different methods, we follow
the evaluation of Bunge et al. [BB23] and solve a Poisson system
for the Franke 2D function [Fra79] using Dirichlet boundary con-
straints. To get a broad spectrum of meshes, we use mesh types

© 2025 The Author(s).
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Library/Approach Poisson Spherical Harmonics Bi-Poisson

NaN Fail Fine Error NaN Fail Fine Error NaN Fail Fine Error

Tr
ig

on
om

et
ri

c CinoLib [Liv19] 2.4 10.4 87.3 103.67 0.0 60.3 39.7 6.65 27.2 23.4 49.4 127.08
Geogram [L∗25] 91.0 0.0 9.0 1.30 91.2 0.0 8.8 0.99 91.0 0.4 8.6 18.12
OpenMesh [BSBK02] 91.0 0.0 9.0 1.26 87.8 0.0 12.2 1.00 91.0 0.4 8.6 23.70
VCGLib [Vis23] 91.0 0.0 9.0 1.28 61.9 26.6 11.6 1.00 91.0 0.6 8.4 9.05

In
tr

in
si

c libigl [JP∗18] 63.0 2.2 34.8 50.29 70.0 9.4 20.6 59.89 59.9 1.8 38.3 88.35
PMP [SB23] 35.8 0.9 63.3 26.95 0.0 66.6 33.4 135.23 55.5 1.0 43.5 76.54
Intrinsic (ours) 28.3 2.8 68.9 22.74 0.0 65.6 34.4 158.39 46.4 1.6 51.9 64.88

E
xt

ri
ns

ic CGAL [The24] 8.3 7.0 84.8 58.18 0.0 66.2 33.8 148.31 30.0 24.0 46.0 116.36
Geometry-Central [SC∗19] 10.7 6.7 82.7 62.15 70.0 9.7 20.3 43.93 32.5 24.3 43.2 113.58
Extrinsic (ours) 5.2 9.5 85.4 56.12 0.0 79.7 20.3 39.60 33.0 23.5 43.5 109.62

N
on

-S
ta

nd
ar

d Mollification [SC20] 0.0 0.0 100.0 0.96 0.0 0.0 100.0 0.95 0.0 0.1 99.9 10.95
iDT+Molli. [BS07, SC20] 1.3 0.0 98.7 0.88† 0.0 0.0 100.0 0.52 5.9 0.0 94.1 9.64
TFEM [QKL∗24] 0.0 0.0 100.0 1.40 0.0 0.0 100.0 0.80 4.4 10.4 85.2 7.37
D-TFEM (ours) 0.0 0.0 100.0 1.00 0.0 0.0 100.0 1.00 0.0 0.0 100.0 1.00

Table 1: Statistics for the Poisson, Spherical Harmonics, and Bi-Poisson experiments. NaN: percentage of non-solvable systems; Fail:
percentage of systems where the error is at least three orders of magnitude higher than reference; Fine: percentage of all other cases; Error:
Mean relative error, as defined in (10). †Error is lower than Molli. but has NaN cases.

(a–e). The combined results can be seen in Table 1 (left) and in the
interactive convergence plots provided as supplementary material.
For most approaches, we see typical quadratic convergence behav-
ior under refinement on the meshes with isolated degenerate trian-
gles and, to a certain degree, for the needle bands, but do not notice
convergence behavior on the cap band and unstructured meshes.

Generally, the trigonometric implementations (except for Cino-
Lib) perform poorly, resulting in 90% NaN values across all tests.
This can be attributed to the fact that the angle computation be-
comes very unstable for small angles, thus resulting in 0° angles,
which lead to the cotangent being undefined. CinoLib circumvents
this problem by using a different computation of the cotangent,
which is robust (i.e., <∞) for 0° angles, leading to a stable perfor-
mance on needle meshes. Yet, the clamping of angles > 90° hurts
its performance for cap meshes, as it does not show the conver-
gence property on the single cap mesh under refinement. We also
do not observe convergence for the other approaches on the single-
cap meshes, as they do not produce solvable systems.

The intrinsic definitions perform noticeably better, with our im-
plementation performing slightly better than the PMP implementa-
tion. Yet, the libigl implementation performs badly in comparison,
which we attribute to the lack of ignoring zero areas. The extrin-
sic definitions perform best overall, wherein our implementation
achieves the best results again, but all libraries perform similarly,
having about 15–17% NaN/Fail values.

Spherical Harmonics To test the extension from two dimensions
to closed manifold surfaces in three dimensions, we again adopt
the evaluation of Bunge et al. [BB23] and solve for the spherical
harmonics with l = 4 and m = 2. We use the test meshes (f, g) for
this experiment. Generally, as seen in Table 1 (middle), all meth-

ods perform poorly on these tests, often not breaking entirely but
leading to a very high error. CinoLib performs best, having a higher
initial error than other methods but staying stable on this higher er-
ror. Furthermore, the methods using clamping of zero areas overall
perform better, as they do not produce singular systems. However,
they still result in the relative error being over 100.

Bi-Poisson Equation To evaluate the impact of inverting the mass
matrix of degenerate meshes and solving a higher-order PDE, we
solve a biharmonic equation with non-zero right-hand side, which
we call the Bi-Poisson equation:

L2u = f ⇔ SM−1Su = Mf, (11)

on a planar grid with boundary constraints on the two outer rings of
vertices. We again solve for the Franke 2D function, setting f to the
bi-Laplacian of the Franke function, and use the test meshes (a–e).
Generally, as seen in Table 1 (right), solving a fourth-order PDE re-
sults in very high errors, and nearly all approaches have NaN/Fail
percentages of above 50%. Typically, the extrinsic approaches per-
form better on cap meshes, while the intrinsic approaches per-
form slightly better on needle meshes. Again, the trigonometric ap-
proaches, except for CinoLib, perform the worst across the board.

4. Don’t Lose Your Temper(ing)!

While the presented methods each have their strengths and weak-
nesses, all of them have constraints set forth by the linear FEM dis-
cretization scheme. When looking beyond the conventional cotan-
gent implementations, several different approaches exist, as dis-
cussed in Section 2. In this section, we investigate the recent tem-
pered finite elements method (TFEM) by Quiriny et al. [QKL∗24].

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.



6 of 9 S. Wagner & M. Botsch / Robust Discrete Differential Operators for Wild Geometry

(a) Local Refinement: [QKL∗24] (b) Local Refinement: ours (c) Up-scaling: [QKL∗24] (d) Up-scaling: ours

Figure 3: The lack of scaling invariance of the original TFEM approach [QKL∗24] leads to artifacts (shown here for geodesic distance
computations [CWW13]) when locally refining a coarse irregular mesh in the center region (left) and when globally up-scaling a regular
regular grid of the unit square by a factor of 103 (right). In contrast, our locally and globally scaling-invariant method works robustly in
both cases.

Let S be the triangle stiffness matrix as defined in (1). This defi-
nition is equivalent to assembling it from local matrices St ∈ R3×3

per triangle t = (vi,v j,vk) ∈ T , which are defined as

St
i j =

〈
x j −xk,xi −xk

〉
4|t| , (12)

where |t| is the area of triangle t [BKP∗10]. Quiriny et al. argue
that this formulation creates a locking phenomenon, where bands
of caps that are (nearly) degenerate are only able to interpolate lin-
early across the band, thus losing the convergence property of the
operator [WMKG07]. To avoid this, they propose to use a mesh-
dependent constant CT ∈ R to clamp the Jacobian determinant of
the geometric map, which is equal to the double triangle area for
linear FEM, resulting in the local tempered stiffness matrix

St
i j =

〈
x j −xk, xi −xk

〉
2 ·max{2|t|,CT } . (13)

This constant is chosen in relation to the mean edge length h of
the mesh, where the authors propose CT = C · h3, with C ∈ R be-
ing a mesh-independent constant. While this approach is more re-
silient to degenerate elements, it does not necessarily fulfill the lin-
ear precision property [WMKG07] (see Section 4.4), which might
be problematic in some applications.

4.1. Extension to Scaling Invariance

While the constants proposed by Quiriny et al. work well on simple
caps bands, they turned out problematic in some of our tests and
performed slightly worse on the more general meshes discussed in
Section 3.2, as shown in Table 1 and Figure 3.

We therefore propose using a local element-dependent constant
Ct instead of the global mesh-dependent constant CT , based on the
mean edge length ht of the element t. This allows for more flexi-
bility when using both well-shaped large and small elements in a
mesh. As this formulation is problematic for truly degenerate trian-
gles, where the mean edge length is (nearly) zero, we clamp ht to
10−10. Moreover, we propose to use h2

t instead of h3
t to guarantee

scaling invariance locally per triangle and globally for the mesh.

This is the case, as Ct and 2|t| behave identically under uniform
scaling of the triangle. Overall, this results in the formulation

Ct =C ·max
{

ht ,10−10
}2

, (14)

c(t) = max{2|t|,Ct}, (15)

where we define c(t) as the tempering function and C = 10−3 as the
mesh-independent constant, which we determined using a hyper-
parameter sweep between 1 and 10−10 on our test meshes. Besides
tempering the stiffness matrix S, we also temper the mass matrix
M by using c(t)/2 instead of the triangle area.

Figure 3 qualitatively shows the importance of our global/local
scaling invariance and the artifacts caused by the lack thereof in the
original TFEM method [QKL∗24].

4.2. Extension to Gradient and Divergence

Although gradient and divergence matrices are not as prominent as
the Laplacian in the geometry processing literature, both play an
important role for, e.g., geodesic distances [CWW13], anisotropic
smoothing [CDR00], or shape editing [YZX∗04].

To extend the notion of tempering to both differential operators,
we only set the simple constraint

D ·G = G⊤MDG = S, (16)

where D,G, and MD are the tempered matrices. One possible solu-
tion to this is using the tempering function c(ti) instead of 2|ti| in
Equation (3) and c(ti)/2 instead of |ti| in MD, which can be easily
verified when using the definitions from Equations (3) and (4).

4.3. Extension to Polygon Meshes

We generalize the TFEM discretization to general polygon meshes
by following the approach of Bunge et al. [BHKB20]: We virtually
refine polygons to triangle fans by inserting a virtual vertex, employ
the above TFEM operators on the refined triangulation, and use the
prolongation/restriction of Bunge et al. [BHKB20] to construct the
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discrete polygon operator matrices. Since the virtual vertex opti-
mizing the harmonic index [BBW∗24] did not converge robustly in
our experiments, we use the original definition as the minimizer of
squared (virtual) triangle areas [BHKB20].

4.4. Comparison

We first evaluate our dynamically-tempered differential operators
on triangle meshes by employing the same tests as conducted
in Section 3.2, but adding one additional experiment to investi-
gate the linear precision property and two experiments to evaluate
the quality of the divergence and gradient operators. We compare
our results (D-TFEM) to those obtained with the original TFEM
[QKL∗24], with the intrinsic Laplacian with mollification [SC20],
and with intrinsic Delaunay triangulation (iDT) [BS07] combined
with mollification. For the latter two cases, we employ the im-
plementation provided in [SC∗19], use the proposed mollification
factor of 10−6, and use the provided mass matrix based on mol-
lification. We do not add a comparison to the regular iDT Lapla-
cian [BS07], as building the intrinsic Delaunay triangulation with-
out mollification did not converge on several meshes.

Matrix Assembly on Thingi10k To evaluate the robustness on
real-world datasets, we build the stiffness matrix for every mani-
fold mesh of the Thingi10k dataset [ZJ16] and evaluate if the ma-
trix contains NaN or ∞. Generally, we found that regular Lapla-
cians fail to produce a valid Laplacian on ∼10% of the meshes.
Yet, approaches ignoring zero-area triangles, CinoLib, and all non-
standard approaches produce valid Laplacians for all meshes.

Poisson Equation on Planar Grids Results of the Poisson test
can be seen in Table 1 (left) and in the interactive convergence
plots provided as supplementary material. Generally, the iDT with
mollification performs best on nearly all triangulations, only strug-
gling on the unstructured meshes. Overall, the tempering methods
are stable for every triangulation, with our dynamic tempering per-
forming best. All non-standard approaches provide a better conver-
gence behavior than the cotangent Laplacian (see Section 3.2).

Spherical Harmonics A similar effect can be observed for the
spherical harmonics test in Table 1 (middle). The iDT with mol-
lification consistently performs better than the tempering-based ap-
proaches, but all non-standard approaches deliver stable results.

Bi-Poisson Equation The reason for this test is to investigate the
impact of the mass matrix inversion (Equation (11)) on the system’s
stability. Table 1 (right) shows that not tempering the mass matrix
can adversely affect the quality of the results, as the approach using
our dynamic tempering performs best with a considerable margin.
Mollification, too, alleviates these effects, but still performs subpar
in some cases, especially on the unstructured triangulations.

Linear Precision A limitation of mollification and tempering is
that they do not fulfill the linear precision property [WMKG07].
To validate this, we compute mean curvature (through norm of the
Laplacian) for the inner vertices of a planar grid with a slightly
degenerate edge. Subsequently, we compute the mean deviation
from zero. While the standard cotangent Laplacians obtain errors

of ∼10−12 −10−16 depending on the discretization, both the mol-
lification and the tempering approaches get errors of ∼10−2, thus
showing that they do not fulfill the linear precision property. Note
that while these operators technically do not satisfy the property,
the regular cotangent Laplacians typically do not fulfill the prop-
erty on more degenerate meshes because of numerical instabilities.

Stiffness Matrix Conditioning When solving linear systems de-
pending on the stiffness matrix, the matrix conditioning plays a vi-
tal role in improving the speed of solvers and preventing round-off
errors [She02]. The condition number strongly depends on the el-
ement quality and can grow arbitrarily large for degenerate faces.
When evaluating the condition numbers of the different stiffness
matrices, we find that for the standard cotangent matrices, the con-
dition number can grow to 1070 or even higher, depending on
the degree of degeneracy. Using the iDT approach with mollifi-
cation yields much lower condition numbers, resulting in 1010 in
the worst cases. Our dynamic tempering approach produces signif-
icantly lower condition numbers of 107 in the worst cases.

Geodesics in Heat To evaluate our newly tempered gradient and
divergence, we qualitatively compare the geodesic distances com-
puted using the geodesics in heat approach [CWW13] over several
test meshes, which are shown in Figure 5, 4, and 1 (left). All three
meshes are real-world examples automatically generated and trian-
gulated using Marching Cubes [LC87], Poisson surface reconstruc-
tion [KBH06], or VoroMesh [MKO∗23], featuring several degen-
eracies similar to the synthetic ones, such as needle bands in Fig-
ure 5, and isolated/clustered degeneracies in Figure 4 and 1 (left).
The cylinder even features faces with three collocated vertices, thus
resulting in truly degenerate geometry. While the exact geodesic
distance computation of geometry-central [MMP87, SC∗19] and
standard linear FEM operators cannot handle this, both the iDT
with mollification and our triangular D-TFEM approach can. Sim-
ilar behavior can also be seen on the Bob representation generated
with VoroMesh [MKO∗23] (Figure 1b) and the laser-scanned face
reconstructed with Poisson surface reconstruction [KBH06] (Fig-
ure 4b). Yet in relation to iDT with mollification, our D-TFEM ap-
proach results in a more efficient and straightforward scheme.

(a) Standard FEM (b) Our D-TFEM

Figure 4: Comparison of geodesics in heat [CWW13] for a laser-
scanned face, reconstructed using triangular Poisson surface re-
construction [KBH06]: While the standard differential operators
(a) fail, our approach (b) robustly obtains good results.
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(a) Exact Geodesic Distances (b) Standard FEM (14 ms) (c) iDT + Molli. (22 ms) (d) Tri. D-TFEM (15 ms) (e) Poly. D-TFEM (88 ms)

Figure 5: Comparison of geodesic distances and matrix assembly timings for an implicit cylinder extracted using Marching Cubes [LC87]:
(a) the exact geodesic approach [MMP87] fails; (b–e) show geodesics in heat [CWW13] using (b) the standard differential operators, (c) iDT
operators with mollification [BS07,SC20], and our D-TFEM for triangle meshes (d) and polygon meshes (e). While the first two approaches
fail, iDT with mollification and our approach both obtain good results, but our approach is simpler to implement and more efficient.

Gradient-based Editing We also evaluate our gradient and diver-
gence operators for gradient-based editing [YZX∗04]. As this re-
quires an extrinsic gradient and divergence definition, this can not
be computed using intrinsic Delaunay methods. We utilize a test
mesh of type (c) wrapped into a cylinder for this test. The results
can be seen in Figure 1 (right). While standard operators fail at the
densely triangulated center, our approach yields the expected result.

General Polygon Meshes By conducting the same experiments
on quad meshes analogous to mesh types (c) and (f), we verify
that the above findings generalize to polygon meshes. We improve
the robustness of the polygon Laplacian to a similar extent as for
the triangle operator for the Poisson, Spherical Harmonics, and Bi-
Poisson tests. The geodesic distances on polygon meshes, which
fail for standard operators, work robustly when using our D-TFEM
approach, as shown in Figures 5e and 1b (top).

5. Recommendation and Conclusion

Based on the numerical experiments in Section 3.2 we can make the
following recommendations on how to robustly compute the stan-
dard cotangent Laplacian. While the robustness of different imple-
mentations varies considerably between use cases and mesh types,
trigonometric computations should be avoided, as they are the least
robust. In our tests, extrinsic computations performed better on cap
meshes, while intrinsic computations performed better on needle
meshes and mixed unstructured meshes. Overall, there is no clear
winner between the extrinsic and intrinsic approaches, but trigono-
metric computation is the clear loser. Regardless, clamping of nega-
tive weights should be avoided, while ignoring (close-to-)zero-area
triangles typically is advantageous.

Our analysis of non-standard approaches in Section 4.4 clearly
demonstrates that the operator stability can be significantly im-
proved when (slightly) violating the linear precision property. Mol-
lification [SC20], intrinsic Delaunay triangulation [BS07] (with
mollification), TFEM [QKL∗24], and our D-TFEM can all dramat-
ically reduce errors and almost always provide a solvable system.
These methods still depend on the stability of the underlying cotan-
gent implementation, as a robust implementation allows to decrease

the amount of mollification/tempering (and thereby reduce the vio-
lation of the linear precision property).

While mollification is a simple and effective strategy to improve
the robustness of the (intrinsic) Laplacian operator, combining it
with the intrinsic Delaunay triangulation gives more accurate re-
sults – actually the lowest overall errors in the Poisson and Spheri-
cal Harmonics experiments. Computing the iDT, however, requires
a more complex implementation and is computationally more ex-
pensive (50–300% overhead during matrix assembly). The major
drawback of mollification and iDT, however, is that both methods
by construction cannot provide extrinsic gradient and divergence
operators, thereby limiting the range of applications. The recent
TFEM [QKL∗24] is a very simple, very efficient, and very ro-
bust approach, but it suffers from severe artifacts for general, non-
homogeneous irregular meshes due to its lack of scaling invariance.

Our proposed D-TFEM approach, in contrast, is applicable to a
wide range of meshes thanks to its scaling invariance and our gen-
eralization to arbitrary polygon meshes. Our extension to extrinsic
operators for discrete gradient and divergence allows it to be em-
ployed for a wider range of geometry processing algorithms. Over-
all, our method is a simple drop-in replacement for the standard
operators, comes with negligible computational overhead, and ro-
bustly works where all standard operators fail. However, it can still
fail in extreme cases where vertices become unconstrained, e.g.,
when all triangles surrounding a vertex have zero area, resulting in
zero cotangent weights for all incident edges.

While our scheme works rather well on surface meshes, it might
be interesting to look into a generalization to volume meshes, as
Quiriny et al. also derive a similar scheme for 3D [QKL∗24]. Fur-
ther, the selected meshes are all manifold, and as such, it might be
interesting to also consider more general surface meshes, allowing
non-manifold edges or vertices, as the cotangent Laplacian can also
be extended to non-manifold edges by summing over the adjacent
triangles [PP93] or building a tufted cover [SC20].
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mum angle condition is not necessary for convergence of the finite ele-
ment method. Numerische Mathematik 120 (2012), 79–88. 2

[JP∗18] JACOBSON A., PANOZZO D., ET AL.: libigl: A simple C++
geometry processing library. https://libigl.github.io, 2018.
2, 3, 5

[Kah97] KAHAN W.: Miscalculating Area and Angles of a Needle-like
Triangle. Tech. rep., University of California, Berkeley, 1997. 3

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson surface re-
construction. In Symposium on Geometry Processing (2006), pp. 61–70.
7
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